
ROSA: Finding Backdoors with Fuzzing
github.com/binsec/rosa archivedarchived repositoryrepository github.com/binsec/rosarum archivedarchived repositoryrepository

Dimitri Kokkonis
CEA List

Université Paris-Saclay

IP Paris

Michaël Marcozzi
CEA List

Université Paris-Saclay

Emilien Decoux
CEA List

Université Paris-Saclay

Stefano Zacchiroli
LTCI

Télécom Paris

IP Paris

https://github.com/binsec/rosa
https://archive.softwareheritage.org/browse/origin/?origin_url=https://github.com/binsec/rosa
https://github.com/binsec/rosarum
https://archive.softwareheritage.org/browse/origin/?origin_url=https://github.com/binsec/rosarum

About backdoors & fuzzing

What is a backdoor? About backdoors & fuzzing

• Weak server configuration?

• Training data poisoning (ML)?

• Crypto (mathematical flaws)?

Credit: Nikita Korenkov (Pexels)

ROSA • About backdoors & fuzzing • What is a backdoor? D. Kokkonis, M. Marcozzi, E. Decoux, S. Zacchiroli 3

What is a backdoor? About backdoors & fuzzing

• Weak server configuration?

• Training data poisoning (ML)?

• Crypto (mathematical flaws)?

We focus on code-level backdoors:

• Hidden access (special input), hard-coded in a program:

‣ To (more) privileged part of the program

without legitimate authentication

‣ To forbidden underlying system resources

(e.g., files, root shell)

Credit: Nikita Korenkov (Pexels)

ROSA • About backdoors & fuzzing • What is a backdoor? D. Kokkonis, M. Marcozzi, E. Decoux, S. Zacchiroli 3

Backdoor attacks About backdoors & fuzzing

Classic “butterfly effect” of supply-chain attacks:

• lzma/xz-utils (2024): complex, dynamic authentication bypass

• PHP (2021): hidden command allowing to execute a command as root

• vsFTPd (2011): hardcoded credentials in legitimate auth

• ProFTPD (2010): hidden command spawing a root shell

• … and a lot of router firmware (hidden servers, hardcoded credentials, …)

Credit: Daniel Stori (turnoff.us)

ROSA • About backdoors & fuzzing • Backdoor attacks D. Kokkonis, M. Marcozzi, E. Decoux, S. Zacchiroli 4

Graybox fuzzing About backdoors & fuzzing

• Automated bruteforce testing approach with feedback loop

• Simple runtime failure detectors (i.e., oracles): crashes, sanitizers, …

• For modern fuzzers (e.g., AFL++):

‣ Proven efficiency in discovering vulnerabilities

‣ Efficient source & binary program exploration

‣ Mitigated “magic byte” problem

ROSA • About backdoors & fuzzing • Graybox fuzzing D. Kokkonis, M. Marcozzi, E. Decoux, S. Zacchiroli 5

Backdoor detection with fuzzing

Expectations Backdoor detection with fuzzing

Primary use cases:

• Vetting third-party software components before integration into in-house large-

scale / security-critical infrastructure

• Vetting appliance (e.g., router, camera) firmware entry points before large-scale /

security-critical deployment

• Preventing backdoor injection in open-source software projects (see our talk

tomorrow, 14:35 @ H.2213)

Credit: Scott Webb (Pexels)

ROSA • Backdoor detection with fuzzing • Expectations D. Kokkonis, M. Marcozzi, E. Decoux, S. Zacchiroli 7

https://fosdem.org/2026/schedule/event/BYACG8-automatic-backdoor-detection-in-ci/

State of the art Backdoor detection with fuzzing

And yet…

• Mainly manual code reverse engineering (difficult, not often done)

• A handful of semi-automated approaches have been proposed:

‣ The idea is automating parts of the reverse engineering process

‣ Only focusing on specific backdoor and target program types

‣ Limited backdoor sample availability for evaluation (lost/non-functioning artifacts)

Tool Approach Target programs Target backdoor types

WEASEL [1] Symbolic/concolic execution Common protocol implementations Authentication bypass, hidden command

Firmalice [2] Symbolic execution + path slicing Any firmware with known “authentication points” Authentication bypass

HumIDIFy [3] ML + “model checking” Common protocol implementations Divergence from protocol specification

Stringer [4] Static analysis Any binary program Hardcoded credentials

[1] Schuster, Felix, and Thorsten Holz. “Towards reducing the attack surface of software backdoors.” In Proceedings of the 2013 ACM SIGSAC conference on Computer & communications security, pp. 851-862. 2013.

[2] Shoshitaishvili, Yan, Ruoyu Wang, Christophe Hauser, Christopher Kruegel, and Giovanni Vigna. “Firmalice-automatic detection of authentication bypass vulnerabilities in binary firmware.” In NDSS, vol. 1, pp. 1-1. 2015.

[3] Thomas, Sam L., Flavio D. Garcia, and Tom Chothia. “HumIDIFy: a tool for hidden functionality detection in firmware.” In International Conference on Detection of Intrusions and Malware, and Vulnerability

Assessment, pp. 279-300. Cham: Springer International Publishing, 2017.

[4] Thomas, Sam L., Tom Chothia, and Flavio D. Garcia. “Stringer: Measuring the importance of static data comparisons to detect backdoors and undocumented functionality.” In Computer Security–ESORICS 2017: 22nd

European Symposium on Research in Computer Security, Oslo, Norway, September 11-15, 2017, Proceedings, Part II 22, pp. 513-531. Springer International Publishing, 2017.

ROSA • Backdoor detection with fuzzing • State of the art D. Kokkonis, M. Marcozzi, E. Decoux, S. Zacchiroli 8

Fuzzing-based detector Backdoor detection with fuzzing

Credit: AFL++

Graybox fuzzing is a good candidate for a backdoor detection technique:

• Largely automatic (no manual reverse-engineering)

• Efficient code exploration for all program types (including binary-only)

• Already widely used for vulnerability detection (in academia and industry)

ROSA • Backdoor detection with fuzzing • Fuzzing-based detector D. Kokkonis, M. Marcozzi, E. Decoux, S. Zacchiroli 9

Fuzzing-based detector Backdoor detection with fuzzing

Credit: AFL++

Graybox fuzzing is a good candidate for a backdoor detection technique:

• Largely automatic (no manual reverse-engineering)

• Efficient code exploration for all program types (including binary-only)

• Already widely used for vulnerability detection (in academia and industry)

But, current state-of-the-art fuzzers cannot detect backdoors out of the box:

• Can detect crashes, but no known mechanism for runtime backdoor triggers

• We need a specialized oracle to detect most backdoor triggers

ROSA • Backdoor detection with fuzzing • Fuzzing-based detector D. Kokkonis, M. Marcozzi, E. Decoux, S. Zacchiroli 9

Contributions

ROSA + ROSARUM Contributions

Introducing ROSA: graybox fuzzing (AFL++) + novel metamorphic oracle

Intuition:

• Similar inputs → similar behavior
• Backdoor-triggering inputs → divergent behavior

ROSA • Contributions • ROSA + ROSARUM D. Kokkonis, M. Marcozzi, E. Decoux, S. Zacchiroli 11

ROSA + ROSARUM Contributions

Introducing ROSA: graybox fuzzing (AFL++) + novel metamorphic oracle

Intuition:

• Similar inputs → similar behavior
• Backdoor-triggering inputs → divergent behavior

Introducing ROSARUM: a long-overdue standardized backdoor benchmark

• 17 programs of various types, with diverse backdoors:

‣ 7 authentic: reconstructed from the literature

‣ 10 synthetic: injected in popular open-source programs (MAGMA benchmark)

ROSA • Contributions • ROSA + ROSARUM D. Kokkonis, M. Marcozzi, E. Decoux, S. Zacchiroli 11

ROSA on an example
(see paper for a detailed presentation)

Belkin backdoor (1/3) ROSA on an example

The Belkin F9K1102 router. Source: belkin.com. The Boa open-source HTTP server. Source: boa.org.

ROSA • ROSA on an example • Belkin backdoor (1/3) D. Kokkonis, M. Marcozzi, E. Decoux, S. Zacchiroli 13

https://www.belkin.com/support-product/?sku=F9K1102
http://www.boa.org/

Belkin backdoor (2/3) ROSA on an example

Phase 1: fuzzer discovers representative inputs

ROSA • ROSA on an example • Belkin backdoor (2/3) D. Kokkonis, M. Marcozzi, E. Decoux, S. Zacchiroli 14

Belkin backdoor (2/3) ROSA on an example

Phase 1: fuzzer discovers representative inputs

Input 𝐴: "GET / HTTP/1.1"

CFG edges:
𝑒1 𝑒2 𝑒3 𝑒4

✓ ✗ ✗ ✗

System calls:
read write clone execve

✓ ✓ ✗ ✗

ROSA • ROSA on an example • Belkin backdoor (2/3) D. Kokkonis, M. Marcozzi, E. Decoux, S. Zacchiroli 14

Belkin backdoor (2/3) ROSA on an example

Phase 1: fuzzer discovers representative inputs

Input 𝐴: "GET / HTTP/1.1"

CFG edges:
𝑒1 𝑒2 𝑒3 𝑒4

✓ ✗ ✗ ✗

System calls:
read write clone execve

✓ ✓ ✗ ✗

Input 𝐵: "POST / HTTP/1.1"

CFG edges:
𝑒1 𝑒2 𝑒3 𝑒4

✓ ✗ ✓ ✗

System calls:
read write clone execve

✓ ✓ ✗ ✗

ROSA • ROSA on an example • Belkin backdoor (2/3) D. Kokkonis, M. Marcozzi, E. Decoux, S. Zacchiroli 14

Belkin backdoor (2/3) ROSA on an example

Phase 1: fuzzer discovers representative inputs

Input 𝐴: "GET / HTTP/1.1"

CFG edges:
𝑒1 𝑒2 𝑒3 𝑒4

✓ ✗ ✗ ✗

System calls:
read write clone execve

✓ ✓ ✗ ✗

Input 𝐵: "POST / HTTP/1.1"

CFG edges:
𝑒1 𝑒2 𝑒3 𝑒4

✓ ✗ ✓ ✗

System calls:
read write clone execve

✓ ✓ ✗ ✗

...

ROSA • ROSA on an example • Belkin backdoor (2/3) D. Kokkonis, M. Marcozzi, E. Decoux, S. Zacchiroli 14

Belkin backdoor (2/3) ROSA on an example

Phase 1: fuzzer discovers representative inputs

Input 𝐴: "GET / HTTP/1.1"

CFG edges:
𝑒1 𝑒2 𝑒3 𝑒4

✓ ✗ ✗ ✗

System calls:
read write clone execve

✓ ✓ ✗ ✗

Input 𝐵: "POST / HTTP/1.1"

CFG edges:
𝑒1 𝑒2 𝑒3 𝑒4

✓ ✗ ✓ ✗

System calls:
read write clone execve

✓ ✓ ✗ ✗

...

Phase 2: fuzzer intensively explores the input space

ROSA • ROSA on an example • Belkin backdoor (2/3) D. Kokkonis, M. Marcozzi, E. Decoux, S. Zacchiroli 14

Belkin backdoor (2/3) ROSA on an example

Phase 1: fuzzer discovers representative inputs

Input 𝐴: "GET / HTTP/1.1"

CFG edges:
𝑒1 𝑒2 𝑒3 𝑒4

✓ ✗ ✗ ✗

System calls:
read write clone execve

✓ ✓ ✗ ✗

Input 𝐵: "POST / HTTP/1.1"

CFG edges:
𝑒1 𝑒2 𝑒3 𝑒4

✓ ✗ ✓ ✗

System calls:
read write clone execve

✓ ✓ ✗ ✗

...

Phase 2: fuzzer intensively explores the input space

Input 𝐶: "GET /abcd HTTP/1.1"

System calls:
read write clone execve

✓ ✓ ✗ ✗

ROSA • ROSA on an example • Belkin backdoor (2/3) D. Kokkonis, M. Marcozzi, E. Decoux, S. Zacchiroli 14

Belkin backdoor (2/3) ROSA on an example

Phase 1: fuzzer discovers representative inputs

Input 𝐴: "GET / HTTP/1.1"

CFG edges:
𝑒1 𝑒2 𝑒3 𝑒4

✓ ✗ ✗ ✗

System calls:
read write clone execve

✓ ✓ ✗ ✗

Input 𝐵: "POST / HTTP/1.1"

CFG edges:
𝑒1 𝑒2 𝑒3 𝑒4

✓ ✗ ✓ ✗

System calls:
read write clone execve

✓ ✓ ✗ ✗

...

Phase 2: fuzzer intensively explores the input space

Input 𝐶: "GET /abcd HTTP/1.1"

System calls:
read write clone execve

✓ ✓ ✗ ✗

→ 𝐵 is most similar

→ ≡ 𝐵

ROSA • ROSA on an example • Belkin backdoor (2/3) D. Kokkonis, M. Marcozzi, E. Decoux, S. Zacchiroli 14

Belkin backdoor (2/3) ROSA on an example

Phase 1: fuzzer discovers representative inputs

Input 𝐴: "GET / HTTP/1.1"

CFG edges:
𝑒1 𝑒2 𝑒3 𝑒4

✓ ✗ ✗ ✗

System calls:
read write clone execve

✓ ✓ ✗ ✗

Input 𝐵: "POST / HTTP/1.1"

CFG edges:
𝑒1 𝑒2 𝑒3 𝑒4

✓ ✗ ✓ ✗

System calls:
read write clone execve

✓ ✓ ✗ ✗

...

Phase 2: fuzzer intensively explores the input space

Input 𝐶: "GET /abcd HTTP/1.1"

System calls:
read write clone execve

✓ ✓ ✗ ✗

→ 𝐵 is most similar

→ ≡ 𝐵

[safe]

ROSA • ROSA on an example • Belkin backdoor (2/3) D. Kokkonis, M. Marcozzi, E. Decoux, S. Zacchiroli 14

Belkin backdoor (2/3) ROSA on an example

Phase 1: fuzzer discovers representative inputs

Input 𝐴: "GET / HTTP/1.1"

CFG edges:
𝑒1 𝑒2 𝑒3 𝑒4

✓ ✗ ✗ ✗

System calls:
read write clone execve

✓ ✓ ✗ ✗

Input 𝐵: "POST / HTTP/1.1"

CFG edges:
𝑒1 𝑒2 𝑒3 𝑒4

✓ ✗ ✓ ✗

System calls:
read write clone execve

✓ ✓ ✗ ✗

...

Phase 2: fuzzer intensively explores the input space

Input 𝐶: "GET /abcd HTTP/1.1"

System calls:
read write clone execve

✓ ✓ ✗ ✗

→ 𝐵 is most similar

→ ≡ 𝐵

[safe]

Input 𝐷: "GET /dev.cgi?c=foo HTTP/1.1"

System calls:
read write clone execve

✓ ✓ ✓ ✓

ROSA • ROSA on an example • Belkin backdoor (2/3) D. Kokkonis, M. Marcozzi, E. Decoux, S. Zacchiroli 14

Belkin backdoor (2/3) ROSA on an example

Phase 1: fuzzer discovers representative inputs

Input 𝐴: "GET / HTTP/1.1"

CFG edges:
𝑒1 𝑒2 𝑒3 𝑒4

✓ ✗ ✗ ✗

System calls:
read write clone execve

✓ ✓ ✗ ✗

Input 𝐵: "POST / HTTP/1.1"

CFG edges:
𝑒1 𝑒2 𝑒3 𝑒4

✓ ✗ ✓ ✗

System calls:
read write clone execve

✓ ✓ ✗ ✗

...

Phase 2: fuzzer intensively explores the input space

Input 𝐶: "GET /abcd HTTP/1.1"

System calls:
read write clone execve

✓ ✓ ✗ ✗

→ 𝐵 is most similar

→ ≡ 𝐵

[safe]

Input 𝐷: "GET /dev.cgi?c=foo HTTP/1.1"

System calls:
read write clone execve

✓ ✓ ✓ ✓

→ 𝐴 is most similar

→ ≢ 𝐴

ROSA • ROSA on an example • Belkin backdoor (2/3) D. Kokkonis, M. Marcozzi, E. Decoux, S. Zacchiroli 14

Belkin backdoor (2/3) ROSA on an example

Phase 1: fuzzer discovers representative inputs

Input 𝐴: "GET / HTTP/1.1"

CFG edges:
𝑒1 𝑒2 𝑒3 𝑒4

✓ ✗ ✗ ✗

System calls:
read write clone execve

✓ ✓ ✗ ✗

Input 𝐵: "POST / HTTP/1.1"

CFG edges:
𝑒1 𝑒2 𝑒3 𝑒4

✓ ✗ ✓ ✗

System calls:
read write clone execve

✓ ✓ ✗ ✗

...

Phase 2: fuzzer intensively explores the input space

Input 𝐶: "GET /abcd HTTP/1.1"

System calls:
read write clone execve

✓ ✓ ✗ ✗

→ 𝐵 is most similar

→ ≡ 𝐵

[safe]

Input 𝐷: "GET /dev.cgi?c=foo HTTP/1.1"

System calls:
read write clone execve

✓ ✓ ✓ ✓

→ 𝐴 is most similar

→ ≢ 𝐴

[suspicious]

ROSA • ROSA on an example • Belkin backdoor (2/3) D. Kokkonis, M. Marcozzi, E. Decoux, S. Zacchiroli 14

Belkin backdoor (3/3) ROSA on an example

Post-processing: a human expert verifies the suspicious input 𝐷 semi-automatically:

1. Collect divergent system calls of 𝐷 relative to most similar representative input

2. Run Sudo with 𝐷 under a tracing program (like strace)

3. Filter only system calls collected in (1)

4. Manually investigate system calls and system call arguments

ROSA • ROSA on an example • Belkin backdoor (3/3) D. Kokkonis, M. Marcozzi, E. Decoux, S. Zacchiroli 15

Belkin backdoor (3/3) ROSA on an example

Post-processing: a human expert verifies the suspicious input 𝐷 semi-automatically:

1. Collect divergent system calls of 𝐷 relative to most similar representative input

2. Run Sudo with 𝐷 under a tracing program (like strace)

3. Filter only system calls collected in (1)

4. Manually investigate system calls and system call arguments

In the case of 𝐷:

• Divergent system calls: {…, 56, 59,…}

$ strace -fe ...,56,59,... -- ./httpd < backdoor-input.txt

...

clone(...)

execve("/bin/sh", "-c", ...)

ROSA • ROSA on an example • Belkin backdoor (3/3) D. Kokkonis, M. Marcozzi, E. Decoux, S. Zacchiroli 15

Belkin backdoor (3/3) ROSA on an example

Post-processing: a human expert verifies the suspicious input 𝐷 semi-automatically:

1. Collect divergent system calls of 𝐷 relative to most similar representative input

2. Run Sudo with 𝐷 under a tracing program (like strace)

3. Filter only system calls collected in (1)

4. Manually investigate system calls and system call arguments

In the case of 𝐷:

• Divergent system calls: {…, 56, 59,…}

$ strace -fe ...,56,59,... -- ./httpd < backdoor-input.txt

...

clone(...)

execve("/bin/sh", "-c", ...)

← fork
← command execution

ROSA • ROSA on an example • Belkin backdoor (3/3) D. Kokkonis, M. Marcozzi, E. Decoux, S. Zacchiroli 15

Belkin backdoor (3/3) ROSA on an example

Post-processing: a human expert verifies the suspicious input 𝐷 semi-automatically:

1. Collect divergent system calls of 𝐷 relative to most similar representative input

2. Run Sudo with 𝐷 under a tracing program (like strace)

3. Filter only system calls collected in (1)

4. Manually investigate system calls and system call arguments

In the case of 𝐷:

• Divergent system calls: {…, 56, 59,…}

$ strace -fe ...,56,59,... -- ./httpd < backdoor-input.txt

...

clone(...)

execve("/bin/sh", "-c", ...)

← fork
← command execution

Arbitrary command execution without authentication → backdoor!

ROSA • ROSA on an example • Belkin backdoor (3/3) D. Kokkonis, M. Marcozzi, E. Decoux, S. Zacchiroli 15

Demo
Disclaimer:

• We bias the fuzzer to find the backdoor trigger almost instantly

• In reality it takes ~4 hours on average (largely because of emulation)

Evaluation

ROSARUM (backdoor dataset) Evaluation

ROSA • Evaluation • ROSARUM (backdoor dataset) D. Kokkonis, M. Marcozzi, E. Decoux, S. Zacchiroli 18

Experimental protocol Evaluation

Standard fuzzing setup:

• Using AFL++ (with AFL++ best practices)

• 10 runs, 8 hours each

• 6 fuzzers in parallel (3 for target program, 3 for dynamic libraries)

• Fixed time for phase 1 (1 minute)

Research questions:

RQ1: Can ROSA detect backdoors in enough diverse contexts, with enough

robustness, speed and automation, to make it usable and useful in the wild?

RQ2: How does ROSA compare to state-of-the-art backdoor detection tools, in terms

of robustness, speed and automation?

ROSA • Evaluation • Experimental protocol D. Kokkonis, M. Marcozzi, E. Decoux, S. Zacchiroli 19

Comparison with the state of the art Evaluation

Tool Approach Context Target programs Target backdoor types

WEASEL [1]
Symbolic/concolic

execution
Reverse-engineering aid

Common protocol

implementations (e.g.,

HTTP)

Authentication bypass,

hidden command

Firmalice [2]
Symbolic execution +

path slicing
Reverse-engineering aid

Any firmware with known

authenticated points
Authentication bypass

HumIDIFy [3] ML + “model checking” Reverse-engineering aid

Common protocol

implementations (e.g.,

HTTP)

Divergence from protocol

specification

Stringer [4] Static analysis Reverse-engineering aid Any binary program Hardcoded credentials

ROSA
Fuzzing + metamorphic

oracle

Automatic detection +

semi-automatic vetting

Any fuzzable binary

program

Any backdoor

materialized through

system calls

[1] Schuster, Felix, and Thorsten Holz. “Towards reducing the attack surface of software backdoors.” In Proceedings of the 2013 ACM SIGSAC conference on Computer & communications security, pp. 851-862. 2013.

[2] Shoshitaishvili, Yan, Ruoyu Wang, Christophe Hauser, Christopher Kruegel, and Giovanni Vigna. “Firmalice-automatic detection of authentication bypass vulnerabilities in binary firmware.” In NDSS, vol. 1, pp. 1-1. 2015.

[3] Thomas, Sam L., Flavio D. Garcia, and Tom Chothia. “HumIDIFy: a tool for hidden functionality detection in firmware.” In International Conference on Detection of Intrusions and Malware, and Vulnerability

Assessment, pp. 279-300. Cham: Springer International Publishing, 2017.

[4] Thomas, Sam L., Tom Chothia, and Flavio D. Garcia. “Stringer: Measuring the importance of static data comparisons to detect backdoors and undocumented functionality.” In Computer Security–ESORICS 2017: 22nd

European Symposium on Research in Computer Security, Oslo, Norway, September 11-15, 2017, Proceedings, Part II 22, pp. 513-531. Springer International Publishing, 2017.

ROSA • Evaluation • Comparison with the state of the art D. Kokkonis, M. Marcozzi, E. Decoux, S. Zacchiroli 20

Comparison with the state of the art Evaluation

Tool Approach Context Target programs Target backdoor types

WEASEL [1]
Symbolic/concolic

execution
Reverse-engineering aid

Common protocol

implementations (e.g.,

HTTP)

Authentication bypass,

hidden command

Firmalice [2]
Symbolic execution +

path slicing
Reverse-engineering aid

Any firmware with known

authenticated points
Authentication bypass

HumIDIFy [3] ML + “model checking” Reverse-engineering aid

Common protocol

implementations (e.g.,

HTTP)

Divergence from protocol

specification

Stringer [4] Static analysis Reverse-engineering aid Any binary program Hardcoded credentials

ROSA
Fuzzing + metamorphic

oracle

Automatic detection +

semi-automatic vetting

Any fuzzable binary

program

Any backdoor

materialized through

system calls

[1] Schuster, Felix, and Thorsten Holz. “Towards reducing the attack surface of software backdoors.” In Proceedings of the 2013 ACM SIGSAC conference on Computer & communications security, pp. 851-862. 2013.

[2] Shoshitaishvili, Yan, Ruoyu Wang, Christophe Hauser, Christopher Kruegel, and Giovanni Vigna. “Firmalice-automatic detection of authentication bypass vulnerabilities in binary firmware.” In NDSS, vol. 1, pp. 1-1. 2015.

[3] Thomas, Sam L., Flavio D. Garcia, and Tom Chothia. “HumIDIFy: a tool for hidden functionality detection in firmware.” In International Conference on Detection of Intrusions and Malware, and Vulnerability

Assessment, pp. 279-300. Cham: Springer International Publishing, 2017.

[4] Thomas, Sam L., Tom Chothia, and Flavio D. Garcia. “Stringer: Measuring the importance of static data comparisons to detect backdoors and undocumented functionality.” In Computer Security–ESORICS 2017: 22nd

European Symposium on Research in Computer Security, Oslo, Norway, September 11-15, 2017, Proceedings, Part II 22, pp. 513-531. Springer International Publishing, 2017.

ROSA • Evaluation • Comparison with the state of the art D. Kokkonis, M. Marcozzi, E. Decoux, S. Zacchiroli 20

Results: robustness Evaluation

• Failed run: fuzzer timed out (8 hours)

• 156/180 successful runs → 87%

ROSA • Evaluation • Results: robustness D. Kokkonis, M. Marcozzi, E. Decoux, S. Zacchiroli 21

Results: detection time Evaluation

• ROSA avg. detection

time: 1h30m

• Stringer: 4/17 backdoors

detected → 24%

ROSA • Evaluation • Results: detection time D. Kokkonis, M. Marcozzi, E. Decoux, S. Zacchiroli 22

Results: automation Evaluation

• ROSA avg. inputs: 7

(semi-automated vetting)

• Stringer avg. inputs: 308 (x44)

(manual reverse engineering)

ROSA • Evaluation • Results: automation D. Kokkonis, M. Marcozzi, E. Decoux, S. Zacchiroli 23

Conclusion

Key takeaways Conclusion

Contributions:

ROSA (1st fuzzer-based generic backdoor detector) + ROSARUM (1st standardized backdoor benchmark)

github.com/binsec/rosa archivedarchived repositoryrepository github.com/binsec/rosarum archivedarchived repositoryrepository

• All ROSARUM backdoors detected (8h fuzzing campaigns)

• Avg. detection time: 1 hour 30 minutes

• Avg. manual effort: 7 suspicious runtime behaviors to vet

• 44 times fewer false positives than Stringer

• No reverse engineering needed

• No source code needed

Dimitri Kokkonis

PhD student

CEA List, IP Paris

Mastodon: @plumtrie@mastodon.social
Twitter: @plumtrie
Homepage: kokkonisd.github.io
BINSEC team: binsec.github.io

We are hiring! secubic-ptcc.github.io/currentjobs

Dr. Michaël Marcozzi

marcozzi.net

Emilien Decoux

Pr. Stefano Zacchiroli

upsilon.cc/~zack/

preprint 👇️

ROSA • Conclusion • Key takeaways D. Kokkonis, M. Marcozzi, E. Decoux, S. Zacchiroli 25

https://github.com/binsec/rosa
https://archive.softwareheritage.org/browse/origin/?origin_url=https://github.com/binsec/rosa
https://github.com/binsec/rosarum
https://archive.softwareheritage.org/browse/origin/?origin_url=https://github.com/binsec/rosarum
https://mastodon.social/@plumtrie
https://x.com/plumtrie
https://kokkonisd.github.io
https://binsec.github.io/
https://secubic-ptcc.github.io/currentjobs
https://www.marcozzi.net
https://upsilon.cc/~zack/

	About backdoors & fuzzing
	What is a backdoor?
	Backdoor attacks
	Graybox fuzzing

	Backdoor detection with fuzzing
	Expectations
	State of the art
	Fuzzing-based detector

	Contributions
	ROSA + ROSARUM

	ROSA on an example
	Belkin backdoor (1/3)
	Belkin backdoor (2/3)
	Belkin backdoor (3/3)

	Demo
	Evaluation
	ROSARUM (backdoor dataset)
	Experimental protocol
	Comparison with the state of the art
	Results: robustness
	Results: detection time
	Results: automation

	Conclusion
	Key takeaways

