github.com/binsec/rosa

archived 'repository.

ROSA: Finding Backdoors with Fuzzing

github.com/binsec/rosarum

{3 FOSDEM

archived 'repository.

list

.® Q'OLYTEC &
universite ’ ®:
PARIS-SACLAY < ,3
_I DE 9’
Dimitri Kokkonis Michaél Marcozzi Emilien Decoux
CEA List CEA List
Université Paris-Saclay
IP Paris

CEA List
Université Paris-Saclay

Stefano Zacchiroli
Université Paris-Saclay

LTCI
Télécom Paris
IP Paris

https://github.com/binsec/rosa
https://archive.softwareheritage.org/browse/origin/?origin_url=https://github.com/binsec/rosa
https://github.com/binsec/rosarum
https://archive.softwareheritage.org/browse/origin/?origin_url=https://github.com/binsec/rosarum

About backdoors & fuzzing

What is a backdoor? About backdoors & fuzzing

« Weak server configuration?
» Training data poisoning (ML)?
« Crypto (mathematical flaws)?
W
.
L 4

| w
|PLEASE |y
Ll \ USE FRONT '
\ DOOR .
. L]
L V ’ g
N

Credit: Nikita Korenkov (Pexels)

ROSA « About backdoors & fuzzing « What is a backdoor?

D. Kokkonis, M. Marcozzi, E. Decoux, S. Zacchiroli 3

What is a backdoor? About backdoors & fuzzing

« Weak server configuration?
» Training data poisoning (ML)?
« Crypto (mathematical flaws)?

N/
We focus on code-level backdoors: A
- Hidden access (special input), hard-coded in a program: y \/ 4
» To (more) privileged part of the program PLEASE

. '0
Ll USE FRONT
N DOOR .

without legitimate authentication
» To forbidden underlying system resources
(e.g., files, root shell)

Credit: Nikita Korenkov (Pexels)

ROSA « About backdoors & fuzzing « What is a backdoor? D. Kokkonis, M. Marcozzi, E. Decoux, S. Zacchiroli 3

Backdoor attacks About backdoors & fuzzing

Classic “butterfly effect” of supply-chain attacks:

« Izma/xz-utils (2024): complex, dynamic authentication bypass

PHP (2021): hidden command allowing to execute a command as root

vsFTPd (2011): hardcoded credentials in legitimate auth

ProFTPD (2010): hidden command spawing a root shell

.. and a lot of router firmware (hidden servers, hardcoded credentials, ...)
1S patched.

DD

Amazijng/
\
t £33 0 1 BT
Danjel Stori {turnoff.us}

Credit: Daniel Stori (turnoff.us)

xz backdoor

[

(

)

ROSA « About backdoors & fuzzing « Backdoor attacks D. Kokkonis, M. Marcozzi, E. Decoux, S. Zacchiroli 4

Graybox fuzzing

« Automated bruteforce testing approach with feedback loop
- Simple runtime failure detectors (i.e., oracles): crashes, sanitizers, ..
« For modern fuzzers (e.g., AFL++):

» Proven efficiency in discovering vulnerabilities

» Efficient source & binary program exploration

» Mitigated “magic byte” problem feedbuck loop

r‘ —————————————————————
l
i
1

:
t
l
l
l
l
L
\
|
|
l
; Liscard
e -

ROSA « About backdoors & fuzzing « Graybox fuzzing

U A SR AU |

About backdoors & fuzzing

D. Kokkonis, M. Marcozzi, E. Decoux, S. Zacchiroli

5

Backdoor detection with fuzzing

EXpeCtatiOnS Backdoor detection with fuzzing

Primary use cases:

« Vetting third-party software components before integration into in-house large-
scale / security-critical infrastructure

- Vetting appliance (e.g., router, camera) firmware entry points before large-scale /
security-critical deployment

« Preventing backdoor injection in open-source software projects (see our talk
tomorrow, 14:35 @ H.2213)

Credit: Scott Webb (Pexels)

ROSA « Backdoor detection with fuzzing * Expectations D. Kokkonis, M. Marcozzi, E. Decoux, S. Zacchiroli 7/

https://fosdem.org/2026/schedule/event/BYACG8-automatic-backdoor-detection-in-ci/

State of the art Backdoor detection with fuzzing

And yet..
- Mainly manual code reverse engineering (difficult, not often done)
« A handful of semi-automated approaches have been proposed:
» The idea is automating parts of the reverse engineering process
» Only focusing on specific backdoor and target program types
» Limited backdoor sample availability for evaluation (lost/non-functioning artifacts)

Tool Approach Target programs Target backdoor types

WEASEL [1] Symbolic/concolic execution Common protocol implementations Authentication bypass, hidden command

Firmalice [2] | Symbolic execution + path slicing | Any firmware with known “authentication points” | Authentication bypass

HumIDIFy [3] | ML + “model checking” Common protocol implementations Divergence from protocol specification

Stringer [4] Static analysis Any binary program Hardcoded credentials

(1] Schuster, Felix, and Thorsten Holz. “Towards reducing the attack surface of software backdoors.” In Proceedings of the 2013 ACM SIGSAC conference on Computer & communications security, pp. 851-862. 2013.

[2] Shoshitaishvili, Yan, Ruoyu Wang, Christophe Hauser, Christopher Kruegel, and Giovanni Vigna. “Firmalice-automatic detection of authentication bypass vulnerabilities in binary firmware.” In NDSS, vol. 1, pp. 1-1. 2015.

[38] Thomas, Sam L., Flavio D. Garcia, and Tom Chothia. “HumIDIFy: a tool for hidden functionality detection in firmware.” In International Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment, pp. 279-300. Cham: Springer International Publishing, 2017.

[4] Thomas, Sam L., Tom Chothia, and Flavio D. Garcia. “Stringer: Measuring the importance of static data comparisons to detect backdoors and undocumented functionality.” In Computer Security—ESORICS 2017: 22nd
European Symposium on Research in Computer Security, Oslo, Norway, September 11-15, 2017, Proceedings, Part Il 22, pp. 513-531. Springer International Publishing, 2017.

ROSA « Backdoor detection with fuzzing « State of the art D. Kokkonis, M. Marcozzi, E. Decoux, S. Zacchiroli 8

Fuzzi ng—based detector Backdoor detection with fuzzing

Credit: AFL++

Graybox fuzzing is a good candidate for a backdoor detection technique:
 Largely automatic (no manual reverse-engineering)

- Efficient code exploration for all program types (including binary-only)
 Already widely used for vulnerability detection (in academia and industry)

ROSA « Backdoor detection with fuzzing * Fuzzing-based detector

D. Kokkonis, M. Marcozzi, E. Decoux, S. Zacchiroli 9

Fuzzi ng—based detector Backdoor detection with fuzzing

Credit: AFL++

Graybox fuzzing is a good candidate for a backdoor detection technique:
 Largely automatic (no manual reverse-engineering)

- Efficient code exploration for all program types (including binary-only)
 Already widely used for vulnerability detection (in academia and industry)

But, current state-of-the-art fuzzers cannot detect backdoors out of the box:
« Can detect crashes, but no known mechanism for runtime backdoor triggers
 We need a specialized oracle to detect most backdoor triggers

ROSA « Backdoor detection with fuzzing * Fuzzing-based detector D. Kokkonis, M. Marcozzi, E. Decoux, S. Zacchiroli @

Contributions

ROSA + ROSARUM Contributions

Introducing ROSA: graybox fuzzing (AFL++) + novel metamorphic oracle

Intuition;

« Similar inputs — similar behavior
« Backdoor-triggering inputs — divergent behavior

ROSA « Contributions « ROSA + ROSARUM D. Kokkonis, M. Marcozzi, E. Decoux, S. Zacchiroli

ROSA + ROSARUM Contributions

Introducing ROSA: graybox fuzzing (AFL++) + novel metamorphic oracle

Intuition;

« Similar inputs — similar behavior
« Backdoor-triggering inputs — divergent behavior

Introducing ROSARUM: a long-overdue standardized backdoor benchmark
« 17 programs of various types, with diverse backdoors:
» / authentic: reconstructed from the literature
» 10 synthetic: injected in popular open-source programs (MAGMA benchmark)

ROSA « Contributions « ROSA + ROSARUM D. Kokkonis, M. Marcozzi, E. Decoux, S. Zacchiroli

ROSA on an example

(see paper for a detailed presentation)

Belkin backdoor (]/3) ROSA on an example

Boa Webserver

Larry Doolittle and Jon Nelson

« News! (last updated 23 February 2005)
» Latest Released Version (0.94.13) here (signature here)
« Latest Development Version (0.94.14rc21) here (signature here)
+ Read the CHANGES file here.
+ Documentation
« Screenshot
« Some Recent Benchmarks
More recent versions of Boa have been benchmarked using zb (ZeusBench) or ab (ApacheBench) at significant speed.
« Public Key for jnelson@boa.org [Key ID 78E2F518] Also available via pgp.mit.edu.
The key fingerprint is:

AC18 D1F2 EBE® 18A5 6B21 5AFE 29B6 7D70 7BE2 F518

« Boa SourceForge Page

« Y2k statement

« some Boa logos

« The old website, for the 0.92 version, has been archived here:

« All new development will begin with the 0.95 series, which is not yet public.

+ Boa currently seems to be the favorite web server in the embedded crowd, and embedded Linux, despite all the marketi

The Belkin F9K1102 router. Source: belkin.com. The Boa open-source HTTP server. Source: boa.org.

NONYARNONYAWea K-10! xample o i D. Kokkonis, M. Marcozzi, E. Decoux, S. Zacchiroli 13

https://www.belkin.com/support-product/?sku=F9K1102
http://www.boa.org/

Belkin backdoor (2/3) ROSA on an example

Phase 1. fuzzer discovers representative inputs

ROSA « ROSA on an example « Belkin backdoor (2/3) D. Kokkonis, M. Marcozzi, E. Decoux, S. Zacchiroli 14

Belkin backdoor (2/3) ROSA on an example

Phase 1. fuzzer discovers representative inputs

/ Input A: "GET / HTTP/1.1" \
(& (& (& e
CFG edges: LN A R
viIX | X | X

read | write | clone | execve

System calls:

\ v v X X /

D. Kokkonis, M. Marcozzi, E. Decoux, S. Zacchiroli 14

ROSA « ROSA on an example « Belkin backdoor (2/3)

Belkin backdoor (2/3) ROSA on an example

Phase 1. fuzzer discovers representative inputs

/ Input A: "GET / HTTP/1.1" \ / Input B: "POST / HTTP/1.1" \
(& (& (& e (& e & (&
CFG edges: LN A R CFG edges: Lzl 914
v X | XX vViIiX|v] KX

execve read | write | clone | execve
System calls: System calls:
v v X X

\ v v X X / \ /

D. Kokkonis, M. Marcozzi, E. Decoux, S. Zacchiroli 14

ROSA « ROSA on an example « Belkin backdoor (2/3)

Belkin backdoor (2/3) ROSA on an example

Phase 1. fuzzer discovers representative inputs

/ Input A: "GET / HTTP/1.1" \ / Input B: "POST / HTTP/1.1" \
(& (& (& e (& e & (&
CFG edges: LN A R CFG edges: Lzl 914
v X | XX vViIiX|v] KX

execve read | write | clone | execve
System calls: System calls:
v v X X

\ v v X X / \ /

D. Kokkonis, M. Marcozzi, E. Decoux, S. Zacchiroli 14

ROSA « ROSA on an example « Belkin backdoor (2/3)

Belkin backdoor (2/3) ROSA on an example

Phase 1. fuzzer discovers representative inputs

/ Input A: "GET / HTTP/1.1" \ / Input B: "POST / HTTP/1.1" \
(& (& (& e (& e & (&
CFG edges: LN A R CFG edges: Lzl 914
vVIX | XX viI]X|v] X
read | write | clone | execve read | write | clone | execve
System calls: System calls:
N e —— N e ————

Phase 2: fuzzer intensively explores the input space

ROSA « ROSA on an example « Belkin backdoor (2/3) D. Kokkonis, M. Marcozzi, E. Decoux, S. Zacchiroli 14

Belkin backdoor (2/3) ROSA on an example

Phase 1. fuzzer discovers representative inputs

/ Input A: "GET / HTTP/1.1" \ / Input B: "POST / HTTP/1.1" \
(& (& (& e (& e & (&
CFG edges: LN A R CFG edges: Lzl 914
vVIX | XX viI]X|v] X
read | write | clone | execve read | write | clone | execve
System calls: System calls:
N e —— N e ————

Phase 2: fuzzer intensively explores the input space

/ Input C: "GET /abcd HTTP/1.1" \

read | write | clone | execve

System calls:

v v X X

- /

ROSA « ROSA on an example « Belkin backdoor (2/3) D. Kokkonis, M. Marcozzi, E. Decoux, S. Zacchiroli 14

Belkin backdoor (2/3) ROSA on an example

Phase 1. fuzzer discovers representative inputs

/ Input A: "GET / HTTP/1.1" \ / Input B: "POST / HTTP/1.1" \
(& (& (& e (& e & (&
CFG edges: LN A R CFG edges: Lzl 914
vVIX | XX viI]X|v] X
read | write | clone | execve read | write | clone | execve
System calls: System calls:
v v X X v v X X

_ SN ~/

Phase 2: fuzzer intensively explores the input space

/ Input C: "GET /abcd HTTP/1.1" \

read | write | clone | execve |— B is most similar

System calls:

v v X X —=B

- /

ROSA « ROSA on an example « Belkin backdoor (2/3) D. Kokkonis, M. Marcozzi, E. Decoux, S. Zacchiroli 14

Belkin backdoor (2/3) ROSA on an example

Phase 1. fuzzer discovers representative inputs

/ Input A: "GET / HTTP/1.1" \ / Input B: "POST / HTTP/1.1" \
(& (& (& e (& e & (&
CFG edges: LN A R CFG edges: Lzl 914
vVIX | XX viI]X|v] X
read | write | clone | execve read | write | clone | execve
System calls: System calls:
v v X X v v X X

_ SN ~/

Phase 2: fuzzer intensively explores the input space

/ Input C: "GET /abcd HTTP/1.1" \

read | write | clone | execve |— B is most similar

System calls:

v v X X —=B

_ [safe] J

ROSA « ROSA on an example « Belkin backdoor (2/3) D. Kokkonis, M. Marcozzi, E. Decoux, S. Zacchiroli 14

Belkin backdoor (2/3) ROSA on an example

Phase 1. fuzzer discovers representative inputs

/ Input A: "GET / HTTP/1.1" \ / Input B: "POST / HTTP/1.1" \
(& (& (& e (& e & (&
CFG edges: LN A R CFG edges: Lzl 914
vVIX | XX viI]X|v] X
read | write | clone | execve read | write | clone | execve
System calls: System calls:
v v X X v v X X

_ SN ~/

Phase 2: fuzzer intensively explores the input space

/ Input C': "GET /abcd HTTP/1.1" \ / Input D: "GET /dev.cgi?c=foo HTTP/1.1" \
read [write | clone | execve |— B is most similar read | write | clone | execve
System calls: System calls:
v v X X —~=RB v v v v
_ [safel AN /

ROSA « ROSA on an example « Belkin backdoor (2/3) D. Kokkonis, M. Marcozzi, E. Decoux, S. Zacchiroli 14

Belkin backdoor (2/3) ROSA on an example

Phase 1. fuzzer discovers representative inputs

/ Input A: "GET / HTTP/1.1" \ / Input B: "POST / HTTP/1.1" \
(& (& (& e (& e & (&
CFG edges: LN A R CFG edges: Lzl 914
vVIX | XX viI]X|v] X
read | write | clone | execve read | write | clone | execve
System calls: System calls:
v v X X v v X X

_ SN ~/

Phase 2: fuzzer intensively explores the input space

/ Input C': "GET /abcd HTTP/1.1" \ / Input D: "GET /dev.cgi?c=foo HTTP/1.1" \
read | write | clone | execve |— B is most similar read | write | clone | execve |— A is most similar
System calls: System calls:
v v X X — =B v v v v — %A

N fate} AN J

ROSA « ROSA on an example « Belkin backdoor (2/3) D. Kokkonis, M. Marcozzi, E. Decoux, S. Zacchiroli 14

Belkin backdoor (2/3) ROSA on an example

Phase 1. fuzzer discovers representative inputs

/ Input A: "GET / HTTP/1.1" \ / Input B: "POST / HTTP/1.1" \
(& (& (& e (& e & (&
CFG edges: LN A R CFG edges: Lzl 914
vVIX | XX viI]X|v] X
read | write | clone | execve read | write | clone | execve
System calls: System calls:
v v X X v v X X

_ SN ~/

Phase 2: fuzzer intensively explores the input space

/ Input C': "GET /abcd HTTP/1.1" \ / Input D: "GET /dev.cgi?c=foo HTTP/1.1" \
read | write | clone | execve |— B is most similar read | write | clone | execve |— A is most similar
System calls: System calls:
v v X X — =B v v v v — %A

_ [safe] VAN [suspicious] J

ROSA « ROSA on an example « Belkin backdoor (2/3) D. Kokkonis, M. Marcozzi, E. Decoux, S. Zacchiroli 14

Belkin backdoor (3/3) ROSA on an example

Post-processing. a human expert verifies the suspicious input D semi-automatically:
. Collect divergent system calls of D relative to most similar representative input
2. Run Sudo with D under a tracing program (like strace)

3. Filter only system calls collected in (1)

4. Manually investigate system calls and system call arguments

ROSA « ROSA on an example * Belkin backdoor (3/3) D. Kokkonis, M. Marcozzi, E. Decoux, S. Zacchiroli 1D

Belkin backdoor (3/3) ROSA on an example

Post-processing. a human expert verifies the suspicious input D semi-automatically:
. Collect divergent system calls of D relative to most similar representative input
2. Run Sudo with D under a tracing program (like strace)

3. Filter only system calls collected in (1)

4. Manually investigate system calls and system call arguments

In the case of D:
« Divergent system calls: {..., 56,59, ...}

$ strace -fe ...,56,59,... -- ./httpd < backdoor-input.txt

clone(...)
execve("/bin/sh",

-c", ...)

ROSA « ROSA on an example * Belkin backdoor (3/3) D. Kokkonis, M. Marcozzi, E. Decoux, S. Zacchiroli 1D

Belkin backdoor (3/3) ROSA on an example

Post-processing. a human expert verifies the suspicious input D semi-automatically:
. Collect divergent system calls of D relative to most similar representative input
2. Run Sudo with D under a tracing program (like strace)

3. Filter only system calls collected in (1)

4. Manually investigate system calls and system call arguments

In the case of D:
« Divergent system calls: {..., 56,59, ...}

$ strace -fe ...,56,59,... -- ./httpd < backdoor-input.txt

clone(...) « fork
execve("/bin/sh",

-¢c", ...) «— command execution

ROSA « ROSA on an example * Belkin backdoor (3/3) D. Kokkonis, M. Marcozzi, E. Decoux, S. Zacchiroli 1D

Belkin backdoor (3/3) ROSA on an example

Post-processing. a human expert verifies the suspicious input D semi-automatically:
. Collect divergent system calls of D relative to most similar representative input
2. Run Sudo with D under a tracing program (like strace)

3. Filter only system calls collected in (1)

4. Manually investigate system calls and system call arguments

In the case of D:
« Divergent system calls: {..., 56,59, ...}

$ strace -fe ...,56,59,... -- ./httpd < backdoor-input.txt

clone(...) « fork

execve("/bin/sh", "-c", ...) < command execution

Arbitrary command execution without authentication — backdoor!

ROSA « ROSA on an example * Belkin backdoor (3/3) D. Kokkonis, M. Marcozzi, E. Decoux, S. Zacchiroli 1D

Demo

Disclaimer:
» We bias the fuzzer to find the backdoor trigger almost instantly
e In reality it takes ~4 hours on average (largely because of emulation)

Evaluation

ROSARUM (backdoor dataset) Syelusifien

Name

Program
Type

Binary size

Origin

Backdoor
Description

Authentic backdoors

Belkin / httpd Router HTTP server 2.6 MiB HTTP request with secret URL value leads to web shell [6]
D-Link / thttpd Router HTTP server 7.2 MiB | Router HTTP request with secret field value bypasses authentication [7]
Linksys / scfgmgr Router TCP server 2.5 MiB | manufacturer Packet with specific payload enables memory read/write [9]
Tenda / goahead Router HTTP server 2.9 MiB Packet with specific payload enables command execution [8]
PHP HTTP server 80.6 MiB Supnly-chain HTTP request with secret field value enables command execution [2]
ProFTPD FTP server 3.3 MiB PPy Secret FTP command leads to root shell [3]
vsFTPd FTP server 2.9 MiB attack FTP usernames containing " :) " lead to root shell [4]

Synthetic backdoors
sudo Unix utility 8.4 MiB | Paper example | Hardcoded credentials (see Listing 1)
libpng Image library 7.0 MiB Secret image metadata values enables command execution
libsndfile Sound library 6.6 MiB Secret sound file metadata value triggers home directory encryption
libtiff Image library 10 MiB | Manual Secret image metadata value enables command execution
libxml2 XML library 8.2 MiB | injection in the | Secret XML node format enables command execution
Lua Language interpreter 3.7 MiB | MAGMA [22] Specific string values in script enables reading from filesystem
OpenSSL / bignum | Crypto library 12.2 MiB | fuzzing Secret bignum exponentiation string enables command execution
PHP / unserialize Language interpreter 30.2 MiB | benchmark Specific string values in serialized object enables PHP code execution
Poppler PDF renderer 39.4 MiB Secret character in PDF comment enables command execution
SQLite3 Database system 6.4 MiB Secret SQL keyword enables removal of home directory

ROSA -« Evaluation * ROSARUM (backdoor dataset)

D. Kokkonis, M. Marcozzi, E. Decoux, S. Zacchiroli

18

Experimental protocol Evaluation

Standard fuzzing setup:

« Using AFL++ (with AFL++ best practices)

* 10 runs, 8 hours each

6 fuzzers in parallel (3 for target program, 3 for dynamic libraries)
- Fixed time for phase 1 (1 minute)

Research questions:

RO1. Can ROSA detect backdoors in enough diverse contexts, with enough
robustness, speed and automation, to make it usable and useful in the wild?

ROQ2: How does ROSA compare to state-of-the-art backdoor detection tools, in terms
of robustness, speed and automation?

ROSA - Evaluation ¢ Experimental protocol D. Kokkonis, M. Marcozzi, E. Decoux, S. Zacchiroli 19

Comparison with the state of the art Evaluation

Tool Approach Context Target programs Target backdoor types

Common protocol

Symbolic/concolic
Reverse-engineering aid | implementations (e.g.,

WEASEL [1] Authentication bypass,

execution HTTP) hidden command
Symbolic execution + Any firmware with known
Firmalice [2] Y . Reverse-engineering aid Y _ _ Authentication bypass
path slicing authenticated points
Common protocol Divergence from protocol
HumIDIFy [3] | ML + “model checking” Reverse-engineering aid | implementations (e.g., g , P
specification
HTTP)
Stringer [4] | Static analysis Reverse-engineering aid | Any binary program Hardcoded credentials

Any backdoor
materialized through
system calls

Fuzzing + metamorphic Automatic detection + Any fuzzable binary

ROSA . . :
oracle semi-automatic vetting | program

(1] Schuster, Felix, and Thorsten Holz. “Towards reducing the attack surface of software backdoors.” In Proceedings of the 2013 ACM SIGSAC conference on Computer & communications security, pp. 851-862. 2013.

[2] Shoshitaishvili, Yan, Ruoyu Wang, Christophe Hauser, Christopher Kruegel, and Giovanni Vigna. “Firmalice-automatic detection of authentication bypass vulnerabilities in binary firmware.” In NDSS, vol. 1, pp. 1-1. 2015.

[38] Thomas, Sam L., Flavio D. Garcia, and Tom Chothia. “HumIDIFy: a tool for hidden functionality detection in firmware.” In International Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment, pp. 279-300. Cham: Springer International Publishing, 2017.

[4] Thomas, Sam L., Tom Chothia, and Flavio D. Garcia. “Stringer: Measuring the importance of static data comparisons to detect backdoors and undocumented functionality.” In Computer Security—ESORICS 2017: 22nd
European Symposium on Research in Computer Security, Oslo, Norway, September 11-15, 2017, Proceedings, Part Il 22, pp. 513-531. Springer International Publishing, 2017.

ROSA « Evaluation « Comparison with the state of the art D. Kokkonis, M. Marcozzi, E. Decoux, S. Zacchiroli 20

Comparison with the state of the art Evaluation

Tool Approach Context Target programs Target backdoor types

Common protocol

Symbolic/concolic . _ . .
Reverse-engineering aid | implementations (e.g.,

WEASEL [1] Authentication bypass,

execution HTTP) hidden command
Symbolic execution + Any firmware with known
Firmalice [2] Y . Reverse-engineering aid Y _ _ Authentication bypass
path slicing authenticated points
Common protocol Divergence from protocol
HumIDIFy [3] | ML + “model checking” Reverse-engineering aid | implementations (e.g., o P

specification

HTTP)

Stringer [4] | Static analysis Reverse-engineering aid | Any binary program Hardcoded credentials

Any backdoor
materialized through
system calls

Fuzzing + metamorphic Automatic detection + Any fuzzable binary

ROSA . . :
oracle semi-automatic vetting | program

(1] Schuster, Felix, and Thorsten Holz. “Towards reducing the attack surface of software backdoors.” In Proceedings of the 2013 ACM SIGSAC conference on Computer & communications security, pp. 851-862. 2013.

[2] Shoshitaishvili, Yan, Ruoyu Wang, Christophe Hauser, Christopher Kruegel, and Giovanni Vigna. “Firmalice-automatic detection of authentication bypass vulnerabilities in binary firmware.” In NDSS, vol. 1, pp. 1-1. 2015.

[38] Thomas, Sam L., Flavio D. Garcia, and Tom Chothia. “HumIDIFy: a tool for hidden functionality detection in firmware.” In International Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment, pp. 279-300. Cham: Springer International Publishing, 2017.

[4] Thomas, Sam L., Tom Chothia, and Flavio D. Garcia. “Stringer: Measuring the importance of static data comparisons to detect backdoors and undocumented functionality.” In Computer Security—ESORICS 2017: 22nd
European Symposium on Research in Computer Security, Oslo, Norway, September 11-15, 2017, Proceedings, Part Il 22, pp. 513-531. Springer International Publishing, 2017.

ROSA « Evaluation « Comparison with the state of the art D. Kokkonis, M. Marcozzi, E. Decoux, S. Zacchiroli 20

Results: robustness Evaluation
ROSA — (10 runs x 8 hours) / backdoor — 1 minute of fuzzing for phase 1 STRINGER
Backdoor Robustness + speed Automation level Backdoor Manually
Time to first backdoor input Baseline | Manually inspected inputs detection inspected
Min. Avg. Max. Avg. seeds | Min. Avg. Max. time strings
Authentic backdoors
Belkin / httpd Timeout Timeout Timeout 2773 2 4 6 Not found 0
+ with specialized seeds* 17m40s 3h49m?29s Timeout 2781 4 5 7 Not found 0
D-Link / thttpd 2m07s 15m00s 43md2s 3648 7 9 12 Not found 113
Linksys / scfgmgr 1m05s 1m29s 1m55s 251 1 1 1 Not found 0
Tenda / goahead 1m28s 3Im34s 8m10s 535 1 2 2 Not found 290
PHP 24m30s 2h03m44s Timeout 11631 4 8 16 6m 573
ProFTPD 4m03s 3h37m32s Timeout 2995 5 8 11 7s 314
— — T — -
veIThd * Failed run: fuzzer timed out (8 hours) > 4 4 Not found L
sudo + 156/180 successful runs — 87% 1 1 1 Not found 137
libpng 13m47s 2h24m46s Timeout 4202 1 2 2 4s 9
libsndfile 2h21m08s 5h04md46s Timeout 10376 9 12 13 5s 8
libtiff 5m08s 12m15s 25m10s 9566 1 3 5 Not found 31
libxml2 8ml7s 27mlds 1h09m06s 12104 9 14 20 Not found 1208
Lua 50m34s 4h07m4dls Timeout 6653 6 12 17 Not found 36
OpenSSL / bignum 9m53s 22m00s 39m52s 1441 1 1 2 Not found 657
PHP / unserialize 23m05s 1h04m39s 1h35m08s 6285 1 1 1 Not found 974
Poppler 11m28s 49m09s 1h33m02s 9544 5 6 8 Not found 543
SQLite3 33ml7s 1h02m52s 2h42m42s 4705 20 26 31 Not found 226

* Two variants of initial fuzzing seeds were used for Belkin: unspecialized (U) and specialized (S) ones. Variant U are the default AFL++ seeds for HTTP
servers, with which the backdoor could never be triggered by AFL++ in 10 runs of 8 hours. Variant S are specialized seeds, targeting the URL parser of the
server, with which the backdoor was triggered in 7 of the 10 AFL++ runs. The oracle could always recognize the backdoor, once AFL++ had triggered it.

D. Kokkonis, M. Marcozzi, E. Decoux, S. Zacchiroli 21

ROSA -« Evaluation » Results: robustness

Results: detection time Evaluation

RosA — (10 runs x 8 hours) / backdoor — 1 minute of fuzzing for phase 1 STRINGER
Backdoor AR Automation level Backdoor Manually
Failed Time to ﬁrst backdoar input Baseline | Manually inspected inputs detection inspected
runs Min. Avg. Max. Avg. seeds | Min. Avg. Max. time strings
Authentic bjickdoors
Belkin / httpd 10/ 10 Timeout Timeout Timeout 2773 2 4 6 Not found 0
+ with specialized seeds* 3/10 17m40s 3h49m?29s Timeout 2781 4 5 7 Not found 0
D-Link / thttpd 0/10 2m07s 15m00s 43m42s 3648 7 9 12 Not found 113
Linksys / scfgmgr 0/10 1m05s 1m29s 1m55s 251 1 1 1 Not found 0
Tenda / goahead 0/10 1m28s 3m34s 8m10s 535 1 2 2 Not found 290
PHP 1710 24m30s 2h03m44s Timeout 11631 4 8 16 6m 573
ProFTPD 4/ 10 4m03s 3h37m32s Timeout :r. ROSA avg. detection 7s 314
vsFTPd 0/10 3m04s Smdls 11m03s) Not found 117
time: Th30m
sudo 0/10 5m47s 8m05s 1imdés | || * Stringer: 4/17 backdoors Not found 137
libpng 2710 13md47s 2h24m46s Timeout : detected — 24% ds 9
libsndfile 3/710 5h04m46s Timeout N TUSTO 7 TZ TO 5s 8
libtiff 0/10 12m15s 25m10s 9566 1 3 5 Not found 31
libxml2 0/10 27ml4s 1h09m06s 12104 9 14 20 Not found 1208
Lua 1/10 4h07mdls Timeout 6653 6 12 17 Not found 36
OpenSSL / bignum 0/10 22m00s 1441 1 1 2 Not found 657
PHP / unserialize 0/10 1h04m39s ' 6285 1 1 1 Not found 974
Poppler 0/10 49m09s : 9544 5 6 8 Not found 543
SQLite3 0/10 1h02m52s ' 4705 20 26 31 Not found 226

* Two variants of initial fuzzing seeds were used for Belkin: unspecialized (U) and specialized (S) ones. Variant U are the default AFL++ seeds for HTTP
servers, with which the backdoor could never be triggered by AFL++ in 10 runs of 8 hours. Variant S are specialized seeds, targeting the URL parser of the
server, with which the backdoor was triggered in 7 of the 10 AFL++ runs. The oracle could always recognize the backdoor, once AFL++ had triggered it.

ROSA -« Evaluation * Results: detection time D. Kokkonis, M. Marcozzi, E. Decoux, S. Zacchiroli 22

Results: automation

* Two variants of initial fuzzing seeds were used for Belkin: unspecialized (U) and specialized (S) ones. Variant U are the default AFL++ seeds for HTTP
servers, with which the backdoor could never be triggered by AFL++ in 10 runs of 8 hours. Variant S are specialized seeds, targeting the URL parser of the
server, with which the backdoor was triggered in 7 of the 10 AFL++ runs. The oracle could always recognize the backdoor, once AFL++ had triggered it.

Evaluation
ROSA — (10 runs x 8 hours) / backdoor — 1 minute of fuzzmg for phase | STRINGER
Backdoor - Robustness + speed A ! _ Backd{)or Manually
Failed Time to first backdoor input Baseline Manually inspected inputs detection inspected
runs Min. Avg. Max. Avg. seeds | Min. Avg. Max. time strings
Authentic backdoors

Belkin / httpd 10/ 10 Timeout Timeout Timeout 2773 2 4 Not found
+ with specialized seeds* 3/10 17m40s 3h49m?29s Timeout 2781 4 5 Not found
D-Link / thttpd 0/10 2m07s 15m00s 43md2s 3648 7 9 Not found
Linksys / scfgmgr 0/10 1m05s 1m29s 1m55s 251 1 1 Not found
Tenda / goahead 0/10 1m28s 3m34s 8m10s 535 1 2 Not found
PHP 1710 24m30s 2h03m44% Timeout 11631 4 8 6m

vsFTPd 0/10 3 4 Not found

(seml automated vetting)

sudo 0/10 5| * Stringer avg. inputs: 308 (x44) 1 Not found
libpng 2/10 | 13 (manual reverse engineering) 1 ds

libsndfile 3710 2h2 S TIcout TOUOTO 9 5s

libtiff 0/10 5m08s 12m15s 25m10s 9566 1 Not found
libxml2 0/10 8m17s 27ml4s 1h09m06s 12104 9 Not found
Lua 1/10 S50m34s 4h07mdls Timeout 6653 6 Not found
OpenSSL / bignum 0/10 9m53s 22m00s 39m52s 1441 1 Not found
PHP / unserialize 0/10 23m05s 1h04m39s 1h35m08s 6285 1 Not found
Poppler 0/10 11m28s 49m09s 1h33m02s 9544 5 Not found
SQLite3 0/10 33m17s 1h02m52s 2h42m4d2s 4705 Not found

ROSA -« Evaluation » Results: automation

D. Kokkonis, M. Marcozzi, E. Decoux, S. Zacchiroli

23

Conclusion

Key ta keaways Conclusion

Contributions:
ROSA (1st fuzzer-based generic backdoor detector) + ROSARUM (1st standardized backdoor benchmark)

github.com/binsec/rosa EEEIENEEEES github.com/binsec/rosarum EEEEIEEREIEIEN

« All ROSARUM backdoors detected (8h fuzzing campaigns) » 44 times fewer false positives than Stringer
* Avg. detection time: 1 hour 30 minutes * No reverse engineering needed
* Avg. manual effort: 7 suspicious runtime behaviors to vet * No source code needed

AwARD WINNER BEST ARTIFACT
:}‘;L \/%\'\ N ;\

Dr. Michaél Marcozzi

marcozzi.net

e L .
L Dimitri Kokkonis

PhD student

CEA List, IP Paris

Twitter: @plumtrie Emilien Decoux

Homepage: kokkonisd.github.io
BINSEC team: binsec.github.io

(We are hiring! secubic-ptcc.github.io/currentjobs]

Pr. Stefano Zacchiroli

upsilon.cc/~zack/

ROSA « Conclusion « Key takeaways D. Kokkonis, M. Marcozzi, E. Decoux, S. Zacchiroli 25

https://github.com/binsec/rosa
https://archive.softwareheritage.org/browse/origin/?origin_url=https://github.com/binsec/rosa
https://github.com/binsec/rosarum
https://archive.softwareheritage.org/browse/origin/?origin_url=https://github.com/binsec/rosarum
https://mastodon.social/@plumtrie
https://x.com/plumtrie
https://kokkonisd.github.io
https://binsec.github.io/
https://secubic-ptcc.github.io/currentjobs
https://www.marcozzi.net
https://upsilon.cc/~zack/

	About backdoors & fuzzing
	What is a backdoor?
	Backdoor attacks
	Graybox fuzzing

	Backdoor detection with fuzzing
	Expectations
	State of the art
	Fuzzing-based detector

	Contributions
	ROSA + ROSARUM

	ROSA on an example
	Belkin backdoor (1/3)
	Belkin backdoor (2/3)
	Belkin backdoor (3/3)

	Demo
	Evaluation
	ROSARUM (backdoor dataset)
	Experimental protocol
	Comparison with the state of the art
	Results: robustness
	Results: detection time
	Results: automation

	Conclusion
	Key takeaways

