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About backdoors & fuzzing



What is a backdoor? About backdoors & fuzzing

• Weak server configuration?

• Training data poisoning (ML)?

• Crypto (mathematical flaws)?

Credit: Nikita Korenkov (Pexels)
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What is a backdoor? About backdoors & fuzzing

• Weak server configuration?

• Training data poisoning (ML)?

• Crypto (mathematical flaws)?

We focus on code-level backdoors:

• Hidden access (special input), hard-coded in a program:

‣ To (more) privileged part of the program

without legitimate authentication

‣ To forbidden underlying system resources

(e.g., files, root shell)

Credit: Nikita Korenkov (Pexels)
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Backdoor attacks About backdoors & fuzzing

Classic “butterfly effect” of supply-chain attacks:

• lzma/xz-utils (2024): complex, dynamic authentication bypass

• PHP (2021): hidden command allowing to execute a command as root

• vsFTPd (2011): hardcoded credentials in legitimate auth

• ProFTPD (2010): hidden command spawing a root shell

• … and a lot of router firmware (hidden servers, hardcoded credentials, …)

Credit: Daniel Stori (turnoff.us)
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Graybox fuzzing About backdoors & fuzzing

• Automated bruteforce testing approach with feedback loop

• Simple runtime failure detectors (i.e., oracles): crashes, sanitizers, …

• For modern fuzzers (e.g., AFL++):

‣ Proven efficiency in discovering vulnerabilities

‣ Efficient source & binary program exploration

‣ Mitigated “magic byte” problem
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Backdoor detection with fuzzing



Expectations Backdoor detection with fuzzing

Primary use cases:

• Vetting third-party software components before integration into in-house large-

scale / security-critical infrastructure

• Vetting appliance (e.g., router, camera) firmware entry points before large-scale / 

security-critical deployment

• Preventing backdoor injection in open-source software projects (see our talk 

tomorrow, 14:35 @ H.2213)

Credit: Scott Webb (Pexels)
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https://fosdem.org/2026/schedule/event/BYACG8-automatic-backdoor-detection-in-ci/


State of the art Backdoor detection with fuzzing

And yet…

• Mainly manual code reverse engineering (difficult, not often done)

• A handful of semi-automated approaches have been proposed:

‣ The idea is automating parts of the reverse engineering process

‣ Only focusing on specific backdoor and target program types

‣ Limited backdoor sample availability for evaluation (lost/non-functioning artifacts)

Tool Approach Target programs Target backdoor types

WEASEL [1] Symbolic/concolic execution Common protocol implementations Authentication bypass, hidden command

Firmalice [2] Symbolic execution + path slicing Any firmware with known “authentication points” Authentication bypass

HumIDIFy [3] ML + “model checking” Common protocol implementations Divergence from protocol specification

Stringer [4] Static analysis Any binary program Hardcoded credentials

[1] Schuster, Felix, and Thorsten Holz. “Towards reducing the attack surface of software backdoors.” In Proceedings of the 2013 ACM SIGSAC conference on Computer & communications security, pp. 851-862. 2013.

[2] Shoshitaishvili, Yan, Ruoyu Wang, Christophe Hauser, Christopher Kruegel, and Giovanni Vigna. “Firmalice-automatic detection of authentication bypass vulnerabilities in binary firmware.” In NDSS, vol. 1, pp. 1-1. 2015.

[3] Thomas, Sam L., Flavio D. Garcia, and Tom Chothia. “HumIDIFy: a tool for hidden functionality detection in firmware.” In International Conference on Detection of Intrusions and Malware, and Vulnerability 

Assessment, pp. 279-300. Cham: Springer International Publishing, 2017.

[4] Thomas, Sam L., Tom Chothia, and Flavio D. Garcia. “Stringer: Measuring the importance of static data comparisons to detect backdoors and undocumented functionality.” In Computer Security–ESORICS 2017: 22nd 

European Symposium on Research in Computer Security, Oslo, Norway, September 11-15, 2017, Proceedings, Part II 22, pp. 513-531. Springer International Publishing, 2017.
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Fuzzing-based detector Backdoor detection with fuzzing

Credit: AFL++

Graybox fuzzing is a good candidate for a backdoor detection technique:

• Largely automatic (no manual reverse-engineering)

• Efficient code exploration for all program types (including binary-only)

• Already widely used for vulnerability detection (in academia and industry)
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Fuzzing-based detector Backdoor detection with fuzzing

Credit: AFL++

Graybox fuzzing is a good candidate for a backdoor detection technique:

• Largely automatic (no manual reverse-engineering)

• Efficient code exploration for all program types (including binary-only)

• Already widely used for vulnerability detection (in academia and industry)

But, current state-of-the-art fuzzers cannot detect backdoors out of the box:

• Can detect crashes, but no known mechanism for runtime backdoor triggers

• We need a specialized oracle to detect most backdoor triggers

ROSA • Backdoor detection with fuzzing • Fuzzing-based detector D. Kokkonis, M. Marcozzi, E. Decoux, S. Zacchiroli 9



Contributions



ROSA + ROSARUM Contributions

Introducing ROSA: graybox fuzzing (AFL++) + novel metamorphic oracle

Intuition:

• Similar inputs → similar behavior
• Backdoor-triggering inputs → divergent behavior
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ROSA + ROSARUM Contributions

Introducing ROSA: graybox fuzzing (AFL++) + novel metamorphic oracle

Intuition:

• Similar inputs → similar behavior
• Backdoor-triggering inputs → divergent behavior

Introducing ROSARUM: a long-overdue standardized backdoor benchmark

• 17 programs of various types, with diverse backdoors:

‣ 7 authentic: reconstructed from the literature

‣ 10 synthetic: injected in popular open-source programs (MAGMA benchmark)
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ROSA on an example
(see paper for a detailed presentation)



Belkin backdoor (1/3) ROSA on an example

The Belkin F9K1102 router. Source: belkin.com. The Boa open-source HTTP server. Source: boa.org.
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https://www.belkin.com/support-product/?sku=F9K1102
http://www.boa.org/


Belkin backdoor (2/3) ROSA on an example

Phase 1: fuzzer discovers representative inputs

ROSA • ROSA on an example • Belkin backdoor (2/3) D. Kokkonis, M. Marcozzi, E. Decoux, S. Zacchiroli 14



Belkin backdoor (2/3) ROSA on an example

Phase 1: fuzzer discovers representative inputs

Input 𝐴: "GET / HTTP/1.1"

CFG edges:
𝑒1 𝑒2 𝑒3 𝑒4

✓ ✗ ✗ ✗

System calls:
read write clone execve

✓ ✓ ✗ ✗
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Belkin backdoor (2/3) ROSA on an example

Phase 1: fuzzer discovers representative inputs

Input 𝐴: "GET / HTTP/1.1"

CFG edges:
𝑒1 𝑒2 𝑒3 𝑒4

✓ ✗ ✗ ✗

System calls:
read write clone execve

✓ ✓ ✗ ✗

 

Input 𝐵: "POST / HTTP/1.1"

CFG edges:
𝑒1 𝑒2 𝑒3 𝑒4

✓ ✗ ✓ ✗

System calls:
read write clone execve

✓ ✓ ✗ ✗
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Belkin backdoor (2/3) ROSA on an example

Phase 1: fuzzer discovers representative inputs

Input 𝐴: "GET / HTTP/1.1"

CFG edges:
𝑒1 𝑒2 𝑒3 𝑒4

✓ ✗ ✗ ✗

System calls:
read write clone execve

✓ ✓ ✗ ✗

 

Input 𝐵: "POST / HTTP/1.1"

CFG edges:
𝑒1 𝑒2 𝑒3 𝑒4

✓ ✗ ✓ ✗

System calls:
read write clone execve

✓ ✓ ✗ ✗

 

...
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Belkin backdoor (2/3) ROSA on an example

Phase 1: fuzzer discovers representative inputs

Input 𝐴: "GET / HTTP/1.1"

CFG edges:
𝑒1 𝑒2 𝑒3 𝑒4

✓ ✗ ✗ ✗

System calls:
read write clone execve

✓ ✓ ✗ ✗

 

Input 𝐵: "POST / HTTP/1.1"

CFG edges:
𝑒1 𝑒2 𝑒3 𝑒4

✓ ✗ ✓ ✗

System calls:
read write clone execve

✓ ✓ ✗ ✗

 

...

Phase 2: fuzzer intensively explores the input space
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Belkin backdoor (2/3) ROSA on an example

Phase 1: fuzzer discovers representative inputs

Input 𝐴: "GET / HTTP/1.1"

CFG edges:
𝑒1 𝑒2 𝑒3 𝑒4

✓ ✗ ✗ ✗

System calls:
read write clone execve

✓ ✓ ✗ ✗

 

Input 𝐵: "POST / HTTP/1.1"

CFG edges:
𝑒1 𝑒2 𝑒3 𝑒4

✓ ✗ ✓ ✗

System calls:
read write clone execve

✓ ✓ ✗ ✗

 

...

Phase 2: fuzzer intensively explores the input space

Input 𝐶: "GET /abcd HTTP/1.1"

System calls:
read write clone execve

✓ ✓ ✗ ✗
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Belkin backdoor (2/3) ROSA on an example

Phase 1: fuzzer discovers representative inputs

Input 𝐴: "GET / HTTP/1.1"

CFG edges:
𝑒1 𝑒2 𝑒3 𝑒4

✓ ✗ ✗ ✗

System calls:
read write clone execve

✓ ✓ ✗ ✗

 

Input 𝐵: "POST / HTTP/1.1"

CFG edges:
𝑒1 𝑒2 𝑒3 𝑒4

✓ ✗ ✓ ✗

System calls:
read write clone execve

✓ ✓ ✗ ✗

 

...

Phase 2: fuzzer intensively explores the input space

Input 𝐶: "GET /abcd HTTP/1.1"

System calls:
read write clone execve

✓ ✓ ✗ ✗

→ 𝐵 is most similar

→ ≡ 𝐵
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Belkin backdoor (2/3) ROSA on an example

Phase 1: fuzzer discovers representative inputs

Input 𝐴: "GET / HTTP/1.1"

CFG edges:
𝑒1 𝑒2 𝑒3 𝑒4

✓ ✗ ✗ ✗

System calls:
read write clone execve

✓ ✓ ✗ ✗

 

Input 𝐵: "POST / HTTP/1.1"

CFG edges:
𝑒1 𝑒2 𝑒3 𝑒4

✓ ✗ ✓ ✗

System calls:
read write clone execve

✓ ✓ ✗ ✗

 

...

Phase 2: fuzzer intensively explores the input space

Input 𝐶: "GET /abcd HTTP/1.1"

System calls:
read write clone execve

✓ ✓ ✗ ✗

→ 𝐵 is most similar

→ ≡ 𝐵

[safe]  
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Belkin backdoor (2/3) ROSA on an example

Phase 1: fuzzer discovers representative inputs

Input 𝐴: "GET / HTTP/1.1"

CFG edges:
𝑒1 𝑒2 𝑒3 𝑒4

✓ ✗ ✗ ✗

System calls:
read write clone execve

✓ ✓ ✗ ✗

 

Input 𝐵: "POST / HTTP/1.1"

CFG edges:
𝑒1 𝑒2 𝑒3 𝑒4

✓ ✗ ✓ ✗

System calls:
read write clone execve

✓ ✓ ✗ ✗

 

...

Phase 2: fuzzer intensively explores the input space

Input 𝐶: "GET /abcd HTTP/1.1"

System calls:
read write clone execve

✓ ✓ ✗ ✗

→ 𝐵 is most similar

→ ≡ 𝐵

[safe]  

Input 𝐷: "GET /dev.cgi?c=foo HTTP/1.1"

System calls:
read write clone execve

✓ ✓ ✓ ✓
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Belkin backdoor (2/3) ROSA on an example

Phase 1: fuzzer discovers representative inputs

Input 𝐴: "GET / HTTP/1.1"

CFG edges:
𝑒1 𝑒2 𝑒3 𝑒4

✓ ✗ ✗ ✗

System calls:
read write clone execve

✓ ✓ ✗ ✗

 

Input 𝐵: "POST / HTTP/1.1"

CFG edges:
𝑒1 𝑒2 𝑒3 𝑒4

✓ ✗ ✓ ✗

System calls:
read write clone execve

✓ ✓ ✗ ✗

 

...

Phase 2: fuzzer intensively explores the input space

Input 𝐶: "GET /abcd HTTP/1.1"

System calls:
read write clone execve

✓ ✓ ✗ ✗

→ 𝐵 is most similar

→ ≡ 𝐵

[safe]  

Input 𝐷: "GET /dev.cgi?c=foo HTTP/1.1"

System calls:
read write clone execve

✓ ✓ ✓ ✓

→ 𝐴 is most similar

→ ≢ 𝐴

ROSA • ROSA on an example • Belkin backdoor (2/3) D. Kokkonis, M. Marcozzi, E. Decoux, S. Zacchiroli 14



Belkin backdoor (2/3) ROSA on an example

Phase 1: fuzzer discovers representative inputs

Input 𝐴: "GET / HTTP/1.1"

CFG edges:
𝑒1 𝑒2 𝑒3 𝑒4

✓ ✗ ✗ ✗

System calls:
read write clone execve

✓ ✓ ✗ ✗

 

Input 𝐵: "POST / HTTP/1.1"

CFG edges:
𝑒1 𝑒2 𝑒3 𝑒4

✓ ✗ ✓ ✗

System calls:
read write clone execve

✓ ✓ ✗ ✗

 

...

Phase 2: fuzzer intensively explores the input space

Input 𝐶: "GET /abcd HTTP/1.1"

System calls:
read write clone execve

✓ ✓ ✗ ✗

→ 𝐵 is most similar

→ ≡ 𝐵

[safe]  

Input 𝐷: "GET /dev.cgi?c=foo HTTP/1.1"

System calls:
read write clone execve

✓ ✓ ✓ ✓

→ 𝐴 is most similar

→ ≢ 𝐴

[suspicious]
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Belkin backdoor (3/3) ROSA on an example

Post-processing: a human expert verifies the suspicious input 𝐷 semi-automatically:

1. Collect divergent system calls of 𝐷 relative to most similar representative input

2. Run Sudo with 𝐷 under a tracing program (like strace)

3. Filter only system calls collected in (1)

4. Manually investigate system calls and system call arguments

ROSA • ROSA on an example • Belkin backdoor (3/3) D. Kokkonis, M. Marcozzi, E. Decoux, S. Zacchiroli 15



Belkin backdoor (3/3) ROSA on an example

Post-processing: a human expert verifies the suspicious input 𝐷 semi-automatically:

1. Collect divergent system calls of 𝐷 relative to most similar representative input

2. Run Sudo with 𝐷 under a tracing program (like strace)

3. Filter only system calls collected in (1)

4. Manually investigate system calls and system call arguments

In the case of 𝐷:

• Divergent system calls: {…, 56, 59,…}

$ strace -fe ...,56,59,... -- ./httpd < backdoor-input.txt

...

clone(...)

execve("/bin/sh", "-c", ...)
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Belkin backdoor (3/3) ROSA on an example

Post-processing: a human expert verifies the suspicious input 𝐷 semi-automatically:

1. Collect divergent system calls of 𝐷 relative to most similar representative input

2. Run Sudo with 𝐷 under a tracing program (like strace)

3. Filter only system calls collected in (1)

4. Manually investigate system calls and system call arguments

In the case of 𝐷:

• Divergent system calls: {…, 56, 59,…}

$ strace -fe ...,56,59,... -- ./httpd < backdoor-input.txt

...

clone(...)

execve("/bin/sh", "-c", ...)

← fork
← command execution
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Belkin backdoor (3/3) ROSA on an example

Post-processing: a human expert verifies the suspicious input 𝐷 semi-automatically:

1. Collect divergent system calls of 𝐷 relative to most similar representative input

2. Run Sudo with 𝐷 under a tracing program (like strace)

3. Filter only system calls collected in (1)

4. Manually investigate system calls and system call arguments

In the case of 𝐷:

• Divergent system calls: {…, 56, 59,…}

$ strace -fe ...,56,59,... -- ./httpd < backdoor-input.txt

...

clone(...)

execve("/bin/sh", "-c", ...)

← fork
← command execution

Arbitrary command execution without authentication → backdoor!
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Demo
Disclaimer:

• We bias the fuzzer to find the backdoor trigger almost instantly

• In reality it takes ~4 hours on average (largely because of emulation)



Evaluation



ROSARUM (backdoor dataset) Evaluation
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Experimental protocol Evaluation

Standard fuzzing setup:

• Using AFL++ (with AFL++ best practices)

• 10 runs, 8 hours each

• 6 fuzzers in parallel (3 for target program, 3 for dynamic libraries)

• Fixed time for phase 1 (1 minute)

Research questions:

RQ1: Can ROSA detect backdoors in enough diverse contexts, with enough 

robustness, speed and automation, to make it usable and useful in the wild?

RQ2: How does ROSA compare to state-of-the-art backdoor detection tools, in terms 

of robustness, speed and automation?
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Comparison with the state of the art Evaluation

Tool Approach Context Target programs Target backdoor types

WEASEL [1]
Symbolic/concolic 

execution
Reverse-engineering aid

Common protocol 

implementations (e.g., 

HTTP)

Authentication bypass, 

hidden command

Firmalice [2]
Symbolic execution + 

path slicing
Reverse-engineering aid

Any firmware with known 

authenticated points
Authentication bypass

HumIDIFy [3] ML + “model checking” Reverse-engineering aid

Common protocol 

implementations (e.g., 

HTTP)

Divergence from protocol 

specification

Stringer [4] Static analysis Reverse-engineering aid Any binary program Hardcoded credentials

ROSA
Fuzzing + metamorphic 

oracle

Automatic detection +

semi-automatic vetting

Any fuzzable binary 

program

Any backdoor 

materialized through 

system calls

[1] Schuster, Felix, and Thorsten Holz. “Towards reducing the attack surface of software backdoors.” In Proceedings of the 2013 ACM SIGSAC conference on Computer & communications security, pp. 851-862. 2013.

[2] Shoshitaishvili, Yan, Ruoyu Wang, Christophe Hauser, Christopher Kruegel, and Giovanni Vigna. “Firmalice-automatic detection of authentication bypass vulnerabilities in binary firmware.” In NDSS, vol. 1, pp. 1-1. 2015.

[3] Thomas, Sam L., Flavio D. Garcia, and Tom Chothia. “HumIDIFy: a tool for hidden functionality detection in firmware.” In International Conference on Detection of Intrusions and Malware, and Vulnerability 

Assessment, pp. 279-300. Cham: Springer International Publishing, 2017.

[4] Thomas, Sam L., Tom Chothia, and Flavio D. Garcia. “Stringer: Measuring the importance of static data comparisons to detect backdoors and undocumented functionality.” In Computer Security–ESORICS 2017: 22nd 

European Symposium on Research in Computer Security, Oslo, Norway, September 11-15, 2017, Proceedings, Part II 22, pp. 513-531. Springer International Publishing, 2017.
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[3] Thomas, Sam L., Flavio D. Garcia, and Tom Chothia. “HumIDIFy: a tool for hidden functionality detection in firmware.” In International Conference on Detection of Intrusions and Malware, and Vulnerability 

Assessment, pp. 279-300. Cham: Springer International Publishing, 2017.

[4] Thomas, Sam L., Tom Chothia, and Flavio D. Garcia. “Stringer: Measuring the importance of static data comparisons to detect backdoors and undocumented functionality.” In Computer Security–ESORICS 2017: 22nd 

European Symposium on Research in Computer Security, Oslo, Norway, September 11-15, 2017, Proceedings, Part II 22, pp. 513-531. Springer International Publishing, 2017.
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Results: robustness Evaluation

• Failed run: fuzzer timed out (8 hours)

• 156/180 successful runs → 87%
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Results: detection time Evaluation

• ROSA avg. detection 

time: 1h30m

• Stringer: 4/17 backdoors 

detected → 24%

ROSA • Evaluation • Results: detection time D. Kokkonis, M. Marcozzi, E. Decoux, S. Zacchiroli 22



Results: automation Evaluation

• ROSA avg. inputs: 7

(semi-automated vetting)

• Stringer avg. inputs: 308 (x44)

(manual reverse engineering)

ROSA • Evaluation • Results: automation D. Kokkonis, M. Marcozzi, E. Decoux, S. Zacchiroli 23



Conclusion



Key takeaways Conclusion

Contributions:

ROSA (1st fuzzer-based generic backdoor detector) + ROSARUM (1st standardized backdoor benchmark)

github.com/binsec/rosa archivedarchived repositoryrepository  github.com/binsec/rosarum archivedarchived repositoryrepository

• All ROSARUM backdoors detected (8h fuzzing campaigns)

• Avg. detection time: 1 hour 30 minutes

• Avg. manual effort: 7 suspicious runtime behaviors to vet

• 44 times fewer false positives than Stringer

• No reverse engineering needed

• No source code needed
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