
Bringing Automatic Detection of 

Backdoors to the CI Pipeline

Dimitri Kokkonis
CEA List

Université Paris-Saclay

IP Paris

Michaël Marcozzi
CEA List

Université Paris-Saclay

Stefano Zacchiroli
LTCI

Télécom Paris

IP Paris



Context



Recent attacks Context

A series of attacks against the supply chain

Backdoor detection in CI • Context • Recent attacks D. Kokkonis, M. Marcozzi, S. Zacchiroli 3



Recent attacks Context

A series of attacks against the supply chain

• Goal: compromise target directly or compromise core project (lots of dependents)

Backdoor detection in CI • Context • Recent attacks D. Kokkonis, M. Marcozzi, S. Zacchiroli 3



Recent attacks Context

A series of attacks against the supply chain

• Goal: compromise target directly or compromise core project (lots of dependents)

Attack vectors:

• Commit-level injection: PHP (2021 incident)

Backdoor detection in CI • Context • Recent attacks D. Kokkonis, M. Marcozzi, S. Zacchiroli 3



Recent attacks Context

A series of attacks against the supply chain

• Goal: compromise target directly or compromise core project (lots of dependents)

Attack vectors:

• Commit-level injection: PHP (2021 incident)

• Release tarball-level injection: vsFTPd (CVE-2011-2523),

ProFTPD (CVE-2010-20103)

Backdoor detection in CI • Context • Recent attacks D. Kokkonis, M. Marcozzi, S. Zacchiroli 3



Recent attacks Context

A series of attacks against the supply chain

• Goal: compromise target directly or compromise core project (lots of dependents)

Attack vectors:

• Commit-level injection: PHP (2021 incident)

• Release tarball-level injection: vsFTPd (CVE-2011-2523),

ProFTPD (CVE-2010-20103)

• Both: XZ Utils (CVE-2024-3094)

Backdoor detection in CI • Context • Recent attacks D. Kokkonis, M. Marcozzi, S. Zacchiroli 3



Recent attacks Context

A series of attacks against the supply chain

• Goal: compromise target directly or compromise core project (lots of dependents)

Attack vectors:

• Commit-level injection: PHP (2021 incident)

• Release tarball-level injection: vsFTPd (CVE-2011-2523),

ProFTPD (CVE-2010-20103)

• Both: XZ Utils (CVE-2024-3094)

Detected a few days after injection, thanks to manual effort and luck

Backdoor detection in CI • Context • Recent attacks D. Kokkonis, M. Marcozzi, S. Zacchiroli 3



Backdoor detection Context

A handful of approaches, two main categories:

• Reverse-engineering based

‣ Help experts by automating parts of binary analysis

• Fuzzing-based

‣ Collect set of representative inputs

‣ Compare every new input to those, different behavior → suspicious

Backdoor detection in CI • Context • Backdoor detection D. Kokkonis, M. Marcozzi, S. Zacchiroli 4



Backdoor detection Context

A handful of approaches, two main categories:

• Reverse-engineering based

‣ Help experts by automating parts of binary analysis

• Fuzzing-based

‣ Collect set of representative inputs

‣ Compare every new input to those, different behavior → suspicious

All of them offer “after-the-fact” detection: backdoor is already in the binary

Backdoor detection in CI • Context • Backdoor detection D. Kokkonis, M. Marcozzi, S. Zacchiroli 4



Prevention? Context

Preventive approaches do exist: CI-level graybox-fuzzing

Backdoor detection in CI • Context • Prevention? D. Kokkonis, M. Marcozzi, S. Zacchiroli 5



Prevention? Context

Preventive approaches do exist: CI-level graybox-fuzzing

• Already used by many popular open-source projects (PHP, Sudo, OpenSSL, …)

• Highly automatic, low false-positive rate, works with constrained resources

• Can discover crash-type vulnerabilities before they make it into a release

Backdoor detection in CI • Context • Prevention? D. Kokkonis, M. Marcozzi, S. Zacchiroli 5



Challenges



Fuzzing for backdoors in CI? Challenges

What if we applied fuzzing-based backdoor detection in CI to prevent injection?

Backdoor detection in CI • Challenges • Fuzzing for backdoors in CI? D. Kokkonis, M. Marcozzi, S. Zacchiroli 7



Fuzzing for backdoors in CI? Challenges

What if we applied fuzzing-based backdoor detection in CI to prevent injection?

Not possible with current tools:

Backdoor detection in CI • Challenges • Fuzzing for backdoors in CI? D. Kokkonis, M. Marcozzi, S. Zacchiroli 7



Fuzzing for backdoors in CI? Challenges

What if we applied fuzzing-based backdoor detection in CI to prevent injection?

Not possible with current tools:

• Too slow (“binary-only” use-case, huge emulation overhead)—we only have ~10 min

Backdoor detection in CI • Challenges • Fuzzing for backdoors in CI? D. Kokkonis, M. Marcozzi, S. Zacchiroli 7



Fuzzing for backdoors in CI? Challenges

What if we applied fuzzing-based backdoor detection in CI to prevent injection?

Not possible with current tools:

• Too slow (“binary-only” use-case, huge emulation overhead)—we only have ~10 min

• Frequent false positives—the CI would block constantly

Backdoor detection in CI • Challenges • Fuzzing for backdoors in CI? D. Kokkonis, M. Marcozzi, S. Zacchiroli 7



A new approach



Differential filtering A new approach

CI has a “rolling” effect: run on version 𝑛, then 𝑛 + 1, then 𝑛 + 2, …

Backdoor detection in CI • A new approach • Differential filtering D. Kokkonis, M. Marcozzi, S. Zacchiroli 9



Differential filtering A new approach

CI has a “rolling” effect: run on version 𝑛, then 𝑛 + 1, then 𝑛 + 2, …

Instead of treating each version independently, we can compare it to the previous one

Backdoor detection in CI • A new approach • Differential filtering D. Kokkonis, M. Marcozzi, S. Zacchiroli 9



Differential filtering A new approach

CI has a “rolling” effect: run on version 𝑛, then 𝑛 + 1, then 𝑛 + 2, …

Instead of treating each version independently, we can compare it to the previous one

If we assume version 𝑛 − 1 is backdoor-free, we can:

Backdoor detection in CI • A new approach • Differential filtering D. Kokkonis, M. Marcozzi, S. Zacchiroli 9



Differential filtering A new approach

CI has a “rolling” effect: run on version 𝑛, then 𝑛 + 1, then 𝑛 + 2, …

Instead of treating each version independently, we can compare it to the previous one

If we assume version 𝑛 − 1 is backdoor-free, we can:

• Use its fuzzer-generated inputs as representative inputs (i.e., known good behavior)

Backdoor detection in CI • A new approach • Differential filtering D. Kokkonis, M. Marcozzi, S. Zacchiroli 9



Differential filtering A new approach

CI has a “rolling” effect: run on version 𝑛, then 𝑛 + 1, then 𝑛 + 2, …

Instead of treating each version independently, we can compare it to the previous one

If we assume version 𝑛 − 1 is backdoor-free, we can:

• Use its fuzzer-generated inputs as representative inputs (i.e., known good behavior)

• Compare the behavior of findings in version 𝑛 to version 𝑛 − 1:

‣ Same behavior → false positive, discard

‣ Different behavior → suspicious

Backdoor detection in CI • A new approach • Differential filtering D. Kokkonis, M. Marcozzi, S. Zacchiroli 9



Example A new approach

Let’s fuzz PHP’s built-in HTTP server in CI to find backdoors (version 𝑛)

Backdoor detection in CI • A new approach • Example D. Kokkonis, M. Marcozzi, S. Zacchiroli 10



Example A new approach

Let’s fuzz PHP’s built-in HTTP server in CI to find backdoors (version 𝑛)

• At some point, fuzzer generates a request with Content-Length set to a huge number

Backdoor detection in CI • A new approach • Example D. Kokkonis, M. Marcozzi, S. Zacchiroli 10



Example A new approach

Let’s fuzz PHP’s built-in HTTP server in CI to find backdoors (version 𝑛)

• At some point, fuzzer generates a request with Content-Length set to a huge number

‣ Server discards request (too large to parse), leads to different system calls

Backdoor detection in CI • A new approach • Example D. Kokkonis, M. Marcozzi, S. Zacchiroli 10



Example A new approach

Let’s fuzz PHP’s built-in HTTP server in CI to find backdoors (version 𝑛)

• At some point, fuzzer generates a request with Content-Length set to a huge number

‣ Server discards request (too large to parse), leads to different system calls

‣ Different system calls → different behavior → suspicious

Backdoor detection in CI • A new approach • Example D. Kokkonis, M. Marcozzi, S. Zacchiroli 10



Example A new approach

Let’s fuzz PHP’s built-in HTTP server in CI to find backdoors (version 𝑛)

• At some point, fuzzer generates a request with Content-Length set to a huge number

‣ Server discards request (too large to parse), leads to different system calls

‣ Different system calls → different behavior → suspicious

• We now send the same request to version 𝑛 − 1

Backdoor detection in CI • A new approach • Example D. Kokkonis, M. Marcozzi, S. Zacchiroli 10



Example A new approach

Let’s fuzz PHP’s built-in HTTP server in CI to find backdoors (version 𝑛)

• At some point, fuzzer generates a request with Content-Length set to a huge number

‣ Server discards request (too large to parse), leads to different system calls

‣ Different system calls → different behavior → suspicious

• We now send the same request to version 𝑛 − 1

‣ Server discards request in the same way

Backdoor detection in CI • A new approach • Example D. Kokkonis, M. Marcozzi, S. Zacchiroli 10



Example A new approach

Let’s fuzz PHP’s built-in HTTP server in CI to find backdoors (version 𝑛)

• At some point, fuzzer generates a request with Content-Length set to a huge number

‣ Server discards request (too large to parse), leads to different system calls

‣ Different system calls → different behavior → suspicious

• We now send the same request to version 𝑛 − 1

‣ Server discards request in the same way

‣ Behavior is the same in both 𝑛 and 𝑛 − 1 → input is safe (pruned from findings)

Backdoor detection in CI • A new approach • Example D. Kokkonis, M. Marcozzi, S. Zacchiroli 10



Example A new approach

Let’s fuzz PHP’s built-in HTTP server in CI to find backdoors (version 𝑛)

• At some point, fuzzer generates a request with Content-Length set to a huge number

‣ Server discards request (too large to parse), leads to different system calls

‣ Different system calls → different behavior → suspicious

• We now send the same request to version 𝑛 − 1

‣ Server discards request in the same way

‣ Behavior is the same in both 𝑛 and 𝑛 − 1 → input is safe (pruned from findings)

This would have been a false positive!

Backdoor detection in CI • A new approach • Example D. Kokkonis, M. Marcozzi, S. Zacchiroli 10



Other optimizations A new approach

Speed is still an issue

• State-of-the-art approach targets “binary-only” programs

‣ Uses AFL++‘s “QEMU mode” to inject instrumentation

‣ Heavy emulator overhead

Backdoor detection in CI • A new approach • Other optimizations D. Kokkonis, M. Marcozzi, S. Zacchiroli 11



Other optimizations A new approach

Speed is still an issue

• State-of-the-art approach targets “binary-only” programs

‣ Uses AFL++‘s “QEMU mode” to inject instrumentation

‣ Heavy emulator overhead

• We adapt it to “source mode”

‣ AFL++‘s special compiler pass injecting instrumentation at the source level

‣ Much higher throughput (execs/sec), ×2–×10

Backdoor detection in CI • A new approach • Other optimizations D. Kokkonis, M. Marcozzi, S. Zacchiroli 11



Evaluation



Backdoor detection Evaluation

Mixed benchmark (authentic and synthetic examples):

• 3 real-world attacks:

‣ CVE-2011-2523 (vsFTPd)

‣ CVE-2010-20103 (ProFTPD)

‣ PHP 2021 incident

• 10 synthetic attacks:

‣ libpng, libsndfile, libtiff, libxml2, Lua, OpenSSL, PHP, Poppler, SQLite3, Sudo

Backdoor detection in CI • Evaluation • Backdoor detection D. Kokkonis, M. Marcozzi, S. Zacchiroli 13



False-positive filtering (1/2) Evaluation

We choose representative commits:

• Group history of commits in sequences (for example, of size 3)

• Compute average size (# of lines) and spread (# of files) per sequence

• Sort sequences in buckets: (small, medium, high) x (size, spread)

• Produce 9 pairs using all combinations of buckets

Backdoor detection in CI • Evaluation • False-positive filtering (1/2) D. Kokkonis, M. Marcozzi, S. Zacchiroli 14



False-positive filtering (1/2) Evaluation

We choose representative commits:

• Group history of commits in sequences (for example, of size 3)

• Compute average size (# of lines) and spread (# of files) per sequence

• Sort sequences in buckets: (small, medium, high) x (size, spread)

• Produce 9 pairs using all combinations of buckets

We do this 2 times:

• Representative commits: see above

• Representative code-affecting commits: like above, but only with commits altering 

source code files

Backdoor detection in CI • Evaluation • False-positive filtering (1/2) D. Kokkonis, M. Marcozzi, S. Zacchiroli 14



False-positive filtering (1/2) Evaluation

We choose representative commits:

• Group history of commits in sequences (for example, of size 3)

• Compute average size (# of lines) and spread (# of files) per sequence

• Sort sequences in buckets: (small, medium, high) x (size, spread)

• Produce 9 pairs using all combinations of buckets

We do this 2 times:

• Representative commits: see above

• Representative code-affecting commits: like above, but only with commits altering 

source code files

For each sequence (𝑎, 𝑏, 𝑐), we run two “rolling” tests: (𝑎, 𝑏), (𝑏, 𝑐)

Backdoor detection in CI • Evaluation • False-positive filtering (1/2) D. Kokkonis, M. Marcozzi, S. Zacchiroli 14



False-positive filtering (1/2) Evaluation

We choose representative commits:

• Group history of commits in sequences (for example, of size 3)

• Compute average size (# of lines) and spread (# of files) per sequence

• Sort sequences in buckets: (small, medium, high) x (size, spread)

• Produce 9 pairs using all combinations of buckets

We do this 2 times:

• Representative commits: see above

• Representative code-affecting commits: like above, but only with commits altering 

source code files

For each sequence (𝑎, 𝑏, 𝑐), we run two “rolling” tests: (𝑎, 𝑏), (𝑏, 𝑐)

In total, 432 commit pairs to evaluate

Backdoor detection in CI • Evaluation • False-positive filtering (1/2) D. Kokkonis, M. Marcozzi, S. Zacchiroli 14



False-positive filtering (2/2) Evaluation

Backdoor detection in CI • Evaluation • False-positive filtering (2/2) D. Kokkonis, M. Marcozzi, S. Zacchiroli 15



False-positive filtering (2/2) Evaluation

Let’s also test package releases at the distro level

• Use versions from the last 3 Debian & Ubuntu releases

• This would add another layer of detection

Backdoor detection in CI • Evaluation • False-positive filtering (2/2) D. Kokkonis, M. Marcozzi, S. Zacchiroli 15



False-positive filtering (2/2) Evaluation

Let’s also test package releases at the distro level

• Use versions from the last 3 Debian & Ubuntu releases

• This would add another layer of detection

This gives us 50 release pairs to evaluate

• We also use this to evaluate backdoor detection

(applying backdoors on top of each release)

Backdoor detection in CI • Evaluation • False-positive filtering (2/2) D. Kokkonis, M. Marcozzi, S. Zacchiroli 15



False-positive filtering (2/2) Evaluation

Let’s also test package releases at the distro level

• Use versions from the last 3 Debian & Ubuntu releases

• This would add another layer of detection

This gives us 50 release pairs to evaluate

• We also use this to evaluate backdoor detection

(applying backdoors on top of each release)

Grand total: 482 version pairs

Backdoor detection in CI • Evaluation • False-positive filtering (2/2) D. Kokkonis, M. Marcozzi, S. Zacchiroli 15



Results (1/2) Evaluation

• Backdoor detection:

‣ All backdoors detected

‣ 90% detection rate with existing 10-min CIFuzz campaigns

Backdoor detection in CI • Evaluation • Results (1/2) D. Kokkonis, M. Marcozzi, S. Zacchiroli 16



Results (1/2) Evaluation

• Backdoor detection:

‣ All backdoors detected

‣ 90% detection rate with existing 10-min CIFuzz campaigns

• False-positive filtering

‣ 0.2% false-positive rate (≥ 2 orders of magnitude lower than existing tools)

– 17/8640 runs with false positives

‣ 1 false positive per run maximum

Backdoor detection in CI • Evaluation • Results (1/2) D. Kokkonis, M. Marcozzi, S. Zacchiroli 16



Results (2/2) Evaluation

• Better error reporting

Backdoor detection in CI • Evaluation • Results (2/2) D. Kokkonis, M. Marcozzi, S. Zacchiroli 17



Conclusion



Key takeaways Conclusion

• Backdoor prevention is possible!

• Low overhead (reusing CI fuzzing artifacts)

• 90% detection rate in our benchmark

• 0.2% false positive rate across 482 different version pairs

Dimitri Kokkonis

PhD student

CEA List, IP Paris

Mastodon: @plumtrie@mastodon.social
Twitter: @plumtrie
Homepage: kokkonisd.github.io
BINSEC team: binsec.github.io

We are hiring! secubic-ptcc.github.io/currentjobs

Dr. Michaël Marcozzi

marcozzi.net

Pr. Stefano Zacchiroli

upsilon.cc/~zack/
paper + tool coming soon!

Backdoor detection in CI • Conclusion • Key takeaways D. Kokkonis, M. Marcozzi, S. Zacchiroli 19

https://mastodon.social/@plumtrie
https://x.com/plumtrie
https://kokkonisd.github.io
https://binsec.github.io/
https://secubic-ptcc.github.io/currentjobs
https://www.marcozzi.net
https://upsilon.cc/~zack/

	Context
	Recent attacks
	Backdoor detection
	Prevention?

	Challenges
	Fuzzing for backdoors in CI?

	A new approach
	Differential filtering
	Example
	Other optimizations

	Evaluation
	Backdoor detection
	False-positive filtering (1/2)
	False-positive filtering (2/2)
	Results (1/2)
	Results (2/2)

	Conclusion
	Key takeaways


